1.1 New and emerging technologies

List 2 advantages to industry that have derived from new technologies

Greater efficiency, Maximise product production, less human error

 Reduction of price, Improved outcomes
Explain one reason why unemployment in the UK may rise as new and emerging technologies develop.
Less demand for low skilled workers on assembly lines (Car production for example)
What is meant by the term Demographic movement?
 Changes in a countries population having lost or gained numbers. Employment or lack
of employment can encourage people to migrate
Give one advantage and one disadvantage to demographic movement
Advantage - Fewer people to house and feed
 disadvantage- Loss of the young and most abled workers
What is meant by the term 'enterprise business'?
A person taking a risk to invest, set up and run a business. A good example can be set up
through crowd funding (e.g. Kickstarter- Know what it is!)
https://www.kickstarter.com/discover/advanced?category_i d=337&staff_picks=1&sort=magic&seed=2564996&page=1

New and emerging technologies are responsible for alternative power sources such as:

- Biomass/Biodiesel (organic matter)
- Tidal/Wind/Solar (Nature)
- Hydroelectric (Dams)

Give 2 examples of how new technologies have improved the lives of the disabled

- Prosthetic limb technology Voice recognition technology
- Stem cell therapy Screen reader for the blind

Employing migrant workers would benefit a company because

Fills skills gaps in businesses and services

Attracts younger, innovative personnel

Discuss the impact that new and emerging technologies have had on society as a whole _____

Advantages: Flexible working hours

Less commuting

Less office space needed

Disadvantages: Lack of routine

Less morale in the work place

Security of information risk

Blurs work-life balance

What is meant by the term Internet of Things?

Using new and emerging technologies to control and run households and businesses.

Interrelated technologies that can switch on the oven or central heating, can alert homeowners of cold callers at the door

(6)

Give 3 examples of new devices derived via the internet

- Video conferencing (Skype)
- Mobile banking- Online bank accounts BACS payments
- One click ordering via smart TV's

Video conferencing

Possible advantages	Possible disadvantages
Meetings and training can take place without leaving the office	May not be as productive as a discussion around a table
Travel costs and the time taken to travel can be reduced or eliminated	Confidential documents may need to be viewed and signed in person
Meetings can be called instantly at multiple locations with little notice	May be a high set-up cost
Speeds up decision making and problem solving	May be difficult to find a suitable time across time zones
	People may not pick up on non-verbal information such as body language

Waste disposal

Businesses must manage any production waste or try and eliminate it using new technologies, for example by:

- using efficient manufacturing processes
- reusing waste within the same manufacturing process
- recycling waste in a different manufacturing process
- designing products so that the whole or parts of them can be reused or recycled
- harnessing any waste energy such as heat and using it elsewhere.

Technique/ system	Description	Example	Advantages	Disadvantages
Standardised design and components	The same components or modular systems are used across many designs Usually an individual part, manufactured in large numbers, to an internationally accepted standard	Electronic (e.g. resistors), or mechanical (e.g. nuts and bolts) components	Consistent safety and quality Speeds up product development as parts already exist Workforce can be easily trained to deal with standard components Cost saving	Difficult to customise Quality of a product may suffer
Just-in-time (JIT)	Computerised stock control ensures that parts are only received when they are needed in the production process and go straight to the production site rather than being stored	Car manufacturers (e.g. production line) On-demand publishing (e.g. photos, greeting cards)	Can increase efficiency and reduce waste Enables changes to production runs to meet demand	 Any break in the supply chain holds up production Cost of more frequent deliveries Fewer bulk-buying discounts
Lean manufacturing	Reducing or eliminating waste in design, manufacturing, distribution and customer services	Eliminating overproduction Minimising defects Reducing storage, movement or processing of parts or products	Multi-skilled teams (cells) are each responsible for part of the production process, which can improve efficiency as workers share their skills and expertise	 Requires time- consuming data analysis Requires disruptive changes to existing processes
Batch production	A set number of products are manufactured that are made in limited quantities or for a	Olympic medals Books with limited print run	Could lower capital costs Reduces inventory/storage	Downtime when reconfiguring the production system

space

quantities or for a

limited time

Technique/ system	Description	Example	Advantages	Disadvantages
Continuous production	Manufacturing of identical high- demand products, 24 hours a day	Production of sheet materials, such as glass, or standard components, such as nuts and bolts	 Removes the cost of stopping and starting the production process Materials can be cheaper in high quantities 	 Automation can lead to staff redundancy High-capital input Low flexibility in changing product/ design A fault in production can stop the whole process
One-off production	A single, unique product made by skilled workers	Complex, large- scale products (e.g. a yacht) or smaller-scale crafted products (e.g. specialist furniture)	High-quality products	 Products are expensive as cost of materials is higher and production is labour intensive Production times are longer
Mass production	 Efficiently and consistently producing many products at a low cost per unit Often automated, with parts added in 	Toy manufacture	Materials can be cheaper in high quantities	 Initial set-up costs can be high If a production line breaks, manufacture is halted Repetitive

sequence

1.2 Evaluating technologies-Informing design decisions

Key terms

Carbon footprint: the amount of CO₂ emissions that can be directly or indirectly attributed to an individual's or company's activities. The larger the carbon footprint, the greater the environmental impact.

Life-cycle analysis: an analysis of all the environmental impacts related to a product from the extraction of the raw material to its use and disposal.

Life-cycle analysis

A life-cycle analysis (LCA) is a systematic inventory of environmental impacts at every stage of a product's life, including:

- raw material extraction and processing
- product / part manufacture and assembly
- product / part transportation and distribution
- product / consumer use
- product disposal or recovery at the end of its useful life.

Governments are moving towards requiring businesses to carry out LCAs so that they can identify opportunities for environmental improvements in the life cycle.

1.2 Evaluating technologies-Informing design decisions

Having drilled and extracted oil from under the sea, describe the possible environmental impacts of transporting it to refineries (investigate)

Oil leaks in to the sea Via leaks in piping Or Tankers could spill

Harmful to the environment

Endangers and kills Sea life

Oil is burnt off the surface releasing toxins into the atmosphere

1.3 Energy: generation, storage and choosing appropriate sources

Non-renewable energy sources are fossil fuels that were formed from the remains of animals and plants that lived millions of years ago. They cannot be replenished quickly and will eventually run out.

Coal Oil Gas

Source	What it is and how it is converted into energy	Advantages	Disadvantages
Biomass	 Organic matter derived from organisms, such as wood, crops, rubbish, landfill gas and alcohol fuels Can be used directly via combustion (of wood or biodegradable wastes) to produce heat, or converted to electricity 	Waste from plants and farming can be used	Large areas needed to cultivate crops Emits fumes that add to global warming
Biodiesel	 Made from natural elements such as plants, vegetables and fermented waste cooking oil Can be used in diesel-powered vehicles without modifying the engine 	Uses waste from plants and farming Does not give off harmful chemicals	Large areas needed to cultivate crops
Tidal	Turbines generate electricity from the movement of tidal water Artificial tidal barrages are constructed across tidal rivers, bays and estuaries, for example – the water is trapped and then released through turbines as the water levels change	 No emissions Powerful Tides are predictable and stable Barrages can have a secondary purpose such as a bridge 	 Lower energy output than fossil fuels Large barrages may have an ecological impact Expensive to build Only available in coastal areas
Wind	Wind turbines use propeller blades, which spin a shaft to create electricity through a generator	Freely available Can be used in remote areas No emissions	Could restrict shipping traffic when placed in the sea Wind can be unpredictable Wind farms are often regarded as unsightly Expensive to set up
Solar	Solar (photovoltaic) panels convert sunlight into electricity Solar thermal power plants use the sun's rays to heat a fluid that is circulated through pipes, transferring heat to water and producing steam Steam is converted into mechanical energy in a turbine, which powers a generator to produce electricity	Reliable source of power in warmer countries Homes can have their own electricity supply More electricity is produced in stronger sunshine	Could change ecology when large solar farms replace traditional farms Expensive to set up Effectiveness of power generation depends on geographical location
Hydroelectric	A dam traps water that flows through tunnels and turns turbines to make electricity	Large amount of low- cost power Can have secondary purpose such as a water reserve	Expensive to set up Construction may damage the environment

You are providing power to a community in the remote countryside. Choose an appropriate power source and justify your choice.

Wind power would be a good choice for power supply to a remote area in the countryside. Wind is freely available and is also renewable, making it a sustainable source of power.

A group of wind turbines can produce sufficient power for a small community with limited disadvantages. Although expensive to set up, once running the power source is self sufficient.

No energy source is completely clean, what other impacts do renewable energy sources have?

The sounds of generators can cause passive impact
The unsightliness of wind farms can cause passive impact

What is a power system?

A power system is a network of components that supply, transfer and use electric power.

Power systems can include batteries, cells, solar cells wind power and mains electricity

Give a suitable power system for each product

Solar

Mains

Batteries

Wind

Explain why solar farms are not welcomed by all communities.

Passive impacts on the environment, some deem them unsightly

They are expensive to set up

Can be unreliable depending on the geographical location

Smart materials are existing or modern materials with physical properties that can be varied by an external input such as temperature, light, moisture, force or electrical current. They sense and respond to conditions in their environment and some can return to their original state when the conditions change.

Photochromic glass is used in aircraft because it is reactive or responsive to UV light. When exposed to light a chemical reaction occurs and changes the colour of the glass. The darkening of the glass protects the pilots eyesight allowing them to work effectively.

Material	Description	Applications	Advantages	Disadvantages
Shape-memory alloys (SMAs)	Can be plastically deformed (have their shape changed, stretched or crumpled) and will return to their original shape when heated or a current is applied Examples include nickel-titanium (nitinol), gold-cadmium and ironnickel-cobalt-titanium)	Glasses frames Greenhouse window openers Medical stents Tweezers and hooks Orthodontic wires	Lengthen life of product Reduced overall size, less complexity	Expensive Continuous use can cause metal fatigue
Nanomaterials	Made of tiny components less than 100 nanometres (nm; a millionth of a millimetre) in at least one direction May be particles, nanowires, nanotubes or thin films and surface coatings	Fire-retardant materials Sunscreen Tennis rackets Motorcycle helmets Car bumpers	Larger relative surface area can improve their strength, elasticity, magnetic, electrical, thermal conductivity and absorbent properties Can combine properties, e.g. lightweight but robust and scratch-resistant	Unusual physical and chemical properties – may need specialist risk assessment relating to health and the environment
Photochromic glass	Darkens when exposed to light and reverses in the dark Tiny particles of silver halide are added to glass; these react with ultraviolet light, causing a chemical reaction that changes the glass's colour	Sunglasses Plane cockpit windows	Adapts easily to changing conditions Can undergo thousands of cycles without performance change	May be slow to react User cannot control reaction
Reactive glass	Uses electrochromatic technology to change from transparent to opaque by applying voltage while allowing light to pass through from both sides	Welding masks and goggles Windows	Retains heat, so reduces energy bills Instant privacy without permanent blocking of light	Expensive Requires electricity source
Piezoelectric materials	Generate a small electric charge when compressed (sensors) Can work in reverse, generating movement when an electric charge is applied (actuators)	 Generating energy Sensors: burglar alarms, keyless car entry, seat belt sensors, keypads, microphones Actuators: for precise position control, e.g. digital cameras, fast-acting valves and nozzles 	Sustainable Low maintenance Compact size especially useful in micro-electronics In actuators, high response speed and can create a large force	Wear out Has temperature, load and voltage limitations
Temperature-responsive polymers, e.g. poly N- isopropylacrylamide (PNIPAM)	Can change physical properties with a change in temperature, so they are useful in many scientific applications	Can deliver drugs, cells or proteins to patients in a controlled way when mixed with liquid polymer When injected into a patient, a gel deposit forms; the drug is released in a controlled way when the temperature is increased Can be used as sensors and gel activators	Useful in biomedical applications	Still being researched so wider application may take time
Conductive inks	Contain pigments that allow small currents to flow through even when dry Made with silver, carbon, graphite or other precious metal-coated base material Used in a pen on any suitable material	Drawing working circuits on polyester, polycarbonates and paper Improvising or repairing circuits on printed circuit boards Printing RFID tags for tickets etc.	Easy to use Lighter and more economical than traditional circuit boards Low waste Ink can be folded, so you can draw a circuit, fold the paper and unfold it to find the circuit still works	Silver is expensive Difficult to get circuits right

Describe the following terms:

Compressive strength is the ability of a material to resist squashing

Tensile strength is the ability of a material to resist stretching

Concrete has an excellent compressive strength, however its tensile strength is poor. Explain how its tensile strength could be improved

The tensile strength of concrete can be improved by embedding steel rods to form reinforced concrete

Give 2 reasons why glass reinforced plastic (GRP) is used for racing car body parts

- Lightweight
- Easily formed into shapes

Plywood is a strong and stable manufactured board, explain how it gains its strength

Plywood is a strong manufactured board due to the way it is constructed. Layers are built up both horizontally and vertically at 90 degree angles. This gives it strength in both directions and prevents it from twisting.

What composite material is used for the manufacture of canoes, car bodies, small swimming pools, water tanks, surfboards and small boat hulls?

Glass reinforced plastic (GRP)

What is Kevlar? Describe the physical properties and some practical applications of this composite material.

Kevlar is a liquid, converted into a fibre and woven into a textile material. Extremely strong, lightweight, corrosion and heat resistant.

Has a high tensile strength to weight ratio, far exceeding steel, carbon fibre and specialist alloys.

Uses when combined with other materials: bullet proof jackets, armour for military vehicles and planes. Formula 1 fuel tanks.

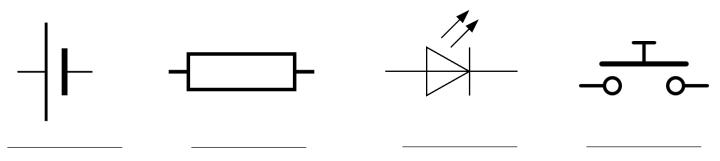
Technical Textiles

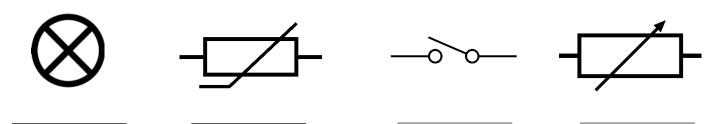
Use the internet to investigate the following materials, give other examples and products

Material	What it does	Example as a product or a task it performs
Agrotextiles		Shade cloth
		Insulation
Construction textiles		Roofing felt
Geotextiles		
Domestic textiles		Memory foam
Environmentally friendly textiles		
Protective textiles		Kevlar/armour
Sports textiles		High technology swimwear
What is Kevlar, what are its	s properties	

.5 Mechanical devices used to produce movement

Load 500N


Sketch the 4 type		produce move	ement				
Linear	R	eciprocal	L	Rota	ary		Oscillating
Levers		_					
Sketch a class o	one lever	Sketch	a class two	lever		Sketch a cla	ass three lever
EFL	the		ELF			F	EL over
Give 3 examples	of each type of I	ever					
•		•			•	•	
•		•			•	•	
•		•			•	•	
Describe the terr	n Mechanical ad	lvantage					
							Load
		Effort 10	OON	Mechanio	cal adva	ntage = -	Effort
	ngt .						


Calculate the mechanical advantage of the wheel barrow

Complete the formula:				
Efficiency =				
Explain the purpose of a l	linkage, give an example in	your answe	r	
·				
Sketch a bell crank				
				Sketch a reverse motion linkage that transfers rotary motion to reciprocal motion
Give an example of where one can be found Cams transfer	motion into		motion.	
Sketch the following:				
Pear shaped cam	Eccent	cric cam		Drop cam
Sketch and label a	simple gear train		Sketch a rack an	d pinion

1.6 Electronic Systems

Name the following circuit symbols: Investigate and label the symbols What do they do?

Electronic components notes:

Draw a schematic diagram that contains the following components:

- Cell
- Lamp
- Push switch

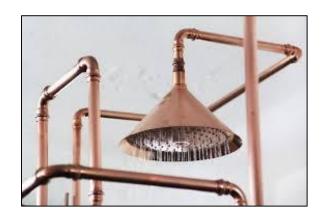
1.6 Electronic Systems Sketch the following circuit symbols Light dependent Transistor Motor resistor Buzzer Draw a schematic diagram that contains the following components: Cell Lamp Push switch

Ferrous metals are metals that contain iron.

They are magnetic and are vulnerable to rust when exposed to moisture.

Туре	Properties	Composition	Melting point	Example uses
Mild steel	Tough, ductile, malleable, magnetic, high tensile strength, easily joined, poor corrosion resistance	Iron + 0.1–0.3% carbon	1400°C	Screws, nails, bolts, girders, car body panels
Stainless steel	 Corrosion resistant, hard, tough, sometimes magnetic, resists wear, difficult to cut Specific properties can be altered by varying the alloyed metals 	Alloy: Carbon steel + 10.5–18% chromium 8% nickel 8% manganese	1400°C	Kitchenware, sinks, cutlery, medical equipment
Cast iron	Hard skin, brittle, soft core, good in compression, self- lubricating, magnetic	Iron + > 2–6% carbon	1200°C	Machine parts, vices, brake discs, manhole covers

Non-ferrous metals are metals that do not contain iron. They have a higher resistance to rust and corrosion. They are not magnetic and tend to be more malleable than ferrous metals.


Туре	Properties	Composition	Melting point	Example uses
Aluminium	Greyish white: corrosion resistant, malleable, ductile, easily machined, good heat/electrical conductor, excellent strength-to- weight ratio, polishes well	Pure metal	660°C	Aircraft, foil, window frames, engine parts, drinks cans
Copper	Reddy brown: corrosion resistant, malleable, ductile, tough, easily machined, good heat/electrical conductor, good hot or cold working, polishes well	Pure metal	1100°C	Electrical wire, gas and water pipes, printed circuits, roofing
Brass	Yellow: corrosion resistant, easily machined, good heat/ electrical conductor, casts well, harder than copper, polishes well	Alloy: 65% copper 35% zinc	900–940∘C	Plumbing fittings, door fittings, locks, musical instruments

An alloy is a mixture of 2 or more metals or elements. By mixing the elements the properties or characteristics are improved

Stainless steel

Brass

Aluminium

Copper

Stainless steel

Aluminium would be a good choice of material for the ladder. Aluminium is lightweight and has a good strength to weight ratio meaning it would easily bare the load of a human body. It would be easier to move and extend than a heavier material. It is a non ferrous metal which doesn't contain iron, meaning it would be resistant to rust in an outdoor environment.

Copper would be a good choice of material for the pipework. Copper is a malleable metal which means it could easily be bent to shape without splitting or cracking. Copper is a non-ferrous metal so it would be resistant to corrosion whilst carrying water.

Key terms

Ductility: ability of a material to deform by bending, twisting or stretching; ability to be drawn out without breaking. Ductility in metals increases with temperature.

Malleability: ability of a material to be permanently deformed in all directions without fracture. It increases with temperature.

Hardness: ability of a material to resist deformation, indentation or penetration. Hard materials can resist abrasion, drilling, impact, scratching, and wear and tear.

A ductile metal is Copper/Aluminium/Mild steel

A Malleable metal is Aluminium/Copper/Mild steel

A hard metal is Stainless steel/Brass