Core essential knowledge for triple chemistry topics paper 3 and 4

Student name

Please note that paper 4 will include topic 1 core knowledge. You will need to learn the core knowledge for topic 1 for each of your exams.

<u>Contents</u> Chemistry code of success	3
Paper 3 – Topic 0 key concepts	4
Paper 3 – Topic 0 key concepts answers	7
Paper 3 – Topic 1 atomic structure	10
Paper 3 – Topic 1 atomic structure answers	13
Paper 3 – Topic 1 ionic bonding	16
Paper 3 – Topic 1 ionic bonding answers	19
Paper 3 – topic 1 covalent bonding	22
Paper 3 – topic 1 covalent bonding answers	26
Paper 3 – Topic 1 masses and calculations	
Paper 3 – Topic 1 masses and calculations answers	
Paper 3 – Topic 2 states of matter	42
Paper 3 – Topic 2 states of matter answers	45
Paper 3 – Topic 3 chemical change	49
Paper 3 – Topic 3 chemical change answers	54
Paper 3 – Topic 3 electrolytic processes	58
Paper 3 – Topic 3 electrolytic processes answers	61
Paper 3 – Topic 3 obtaining and using metals	64
Paper 3 – Topic 3 obtaining and using metals answers	66
Paper 3 – Topic 4 reversible reactions and equilibria	68
Paper 3 – topic 4 reversible reactions and equilibria answers	69
Paper 3 Topic 5 Triple chemistry only	71
Paper 3 Topic 5 Triple chemistry only answers	77
Paper 4 – Topic 6 groups in the periodic table	83
Paper 4 – Topic 6 groups in the periodic table answers	86
Paper 4 – Topic 7 rates of reaction	89
Paper 4 – Topic 7 rates of reaction answers	92
Paper 4 – topic 8 fuels and Earth science	95
Paper 4 – topic 8 fuels and Earth science answers	99
Paper 4 – Topic 9 Triple chemistry only	103
Paper 4 – topic 9 triple chemistry answers	

Chemistry code of success

In order to be successful we need to work together and support each other. The code of success is designed to share with you the things that need to happen for you to be successful. Success is not based on intelligence. Success is based on hard work, practice and repetition, learning from mistakes and a desire to be the best you can.

Core knowledge is a crucial part of your chemistry studies.

Students that have a good recall of their core knowledge have a greater chance of success in chemistry.

This booklet contains the core knowledge that you must learn during the next two years of your studies. There is also a quizlet that you can use to practice your core knowledge. This can be found with Quizlet by searching for buildyouriceberg.

To help students learning and remember these facts the following strategies are recommended: a) *Regular quizzing* - Three 15-20 minute sessions a week would help greatly.

b) *Spacing* – leaving time between each sessions will allow students to forget information. This forgetting and relearning strengthens the recall of information.

c) *Interleaving* – cover a different topic in each revision session helps to strengthen a student's memory of the core knowledge.

Parents/carers if you are able to support your child with the learning of this material then that

Typical Forgetting Curve for Newly Learned Information

is a great help. You can quiz them by asking them the questions within the book. The answers have been included to support the use of this booklet.

Remember that your success in chemistry is your responsibility. Your success will be based on how hard you work.

Paper 3 – Topic 0 key concepts

1. Complete the table below to show the formulas for the elements, compounds and ions shown.

Elements	Formula	Compounds	Formula	lons	Formula
Hydrogen		Water		Hydrogen	
Sodium		Carbon dioxide		Chloride	
Chlorine		Hydrochloric acid		Sodium	
Nitrogen		Sulfuric acid		Hydroxide	
Oxygen		Nitric acid		Carbonate	
Helium		Sodium chloride		Sulfate	
Carbon		Magnesium oxide		Nirate	
Aluminium		Aluminium oxide		Oxide	

2. Give two reasons why hazard symbols are included on chemical containers.

- i)_____ ii) _____
- 3. Complete the table below to show the name, description and precautions which need to be taken for each hazard symbol.

Symbol	Name	Description	Precautions

*		
¥_		
ð		

4. Complete the table to show the number and type of each atom in the following formulas.

	Number and type of atoms
CO ₂	
4CO ₂	
$5CO_2 + 4H_2O$	
Co(OH) ₂	
Al ₂ (SO ₄) ₃	
4C ₂ H ₅ OH + 12O ₂	

5. Balance the following equations

1.	Ca + HF → CaF ₂ + H ₂	2. NaBr + Cl ₂ → NaCl + Br ₂
3.	$Zn + H_2O \rightarrow ZnO + H_2$	4. Li + O ₂ → Li ₂ O
5.	$CH_4 + O_2 \rightarrow CO_2 + H_2O$	6. $AI_2O_3 \rightarrow AI + O_2$
7.	N ₂ + H ₂ → NH ₃	9. Fe ₂ O ₃ + CO → Fe + CO ₂
10.	Li + H ₂ O → LiOH + H ₂	11. $CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$

6. What do each of the state mean?

State	meaning
symbol	
S	
1	
g	
aq	

Paper 3 – Topic 0 key concepts answers

1. Complete the table below to show the formulas for the elements, compounds and ions shown.

Elements	Formula	Compounds	Formula	lons	Formula
Hydrogen	Н	Water	H ₂ O	Hydrogen	H⁺
Sodium	Na	Carbon dioxide	CO ₂	Chloride	Cľ
Chlorine	Cl	Hydrochloric acid	HCI	Sodium	Na⁺
Nitrogen	Ν	Sulfuric acid	H₂SO₄	Hydroxide	OH ⁻
Oxygen	0	Nitric acid	HNO₃	Carbonate	<i>CO</i> ₃ ²⁻
Helium	Не	Sodium chloride	NaCl	Sulfate	<i>SO</i> ₄ ²⁻
Carbon	С	Magnesium oxide	MgO	Nirate	NO ₃ -
Aluminium	Al	Aluminium oxide	<i>Al</i> ₂ <i>O</i> ₃	Oxide	<i>O</i> ²⁻

- 2. Give two reasons why hazard symbols are included on chemical containers.
 i) to show everyone the potential dangers associated with the chemical inside the container.
 ii) to show everyone the precautions they need to take with the chemical in the laboratory.
- 3. Complete the table below to show the name, description and precautions which need to be taken for each hazard symbol.

Symbol	Name	Description	Precautions
	Explosive	They could explode	Keep these materials away from heat and fire.
	Highly flammable	Catches fire easily	Keep away from sparks and oxidising agents. Wear eye protection
	Toxic	Cause death – if swallowed, breathed in or absorb through skin	Wear gloves, wear mask, wear eye protection, use a fume cupboard
*,	irritant	Irritates skin, eyes, lungs	Wear gloves, eye protection, handle with care and wipe up any spills

*	harmful	Similar to toxic but not as dangerous	Handle with care, gloves, eye protection, immediately wash off spills from skin
	corrosive	Eat away at objects	Eye protection, gloves, wipe up spills, handle with care
¥	Hazardous to the environment	Harms or kills living things in the environment	Don't dispose of these chemicals down the drain. Dispose carefully in a controlled way.
0	Oxidising agents	Provide oxygen which makes other substances burn more fiercely	Keep away from highly flammable chemicals, eye protection

 4. Complete the table to show the number and type of each atom in the following formulas.

	Number and type of atoms
CO ₂	1 x carbon, 2 x oxygen
4CO ₂	4 x carbon, 8 x oxygen
$5CO_2 + 4H_2O$	5 x carbon, 10 x oxygen and 8 x hydrogen, 4 x hydrogen
Co(OH) ₂	1 x cobalt, 2 x oxygen, 2 x hydrogen
Al ₂ (SO ₄) ₃	2 x aluminium, 3 x sulfur, 12 x oxygen
$4C_{2}H_{5}OH + 12O_{2}$	8 x carbon, 24 x hydrogen, 4 x oxygen and 24 x oxygen

5. Balance the following equations

8.	$Ca + HF \rightarrow CaF_2 + H_2$	9. NaBr + Cl ₂ \rightarrow NaCl + Br ₂
Ca ·	+ $2HF \rightarrow CaF_2 + H_2$	$2NaBr + Cl_2 \rightarrow 2NaCl + Br_2$
10.	$Zn + H_2O \rightarrow ZnO + H_2$	11. Li + $O_2 \rightarrow Li_2O$
	Zn + H₂O → ZnO + H₂	$4Li + O_2 \rightarrow 2Li_2O$
12.	$CH_4 + O_2 \rightarrow CO_2 + H_2O$	13. $Al_2O_3 \rightarrow Al + O_2$
	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	$2AI_2O_3 \rightarrow 4AI + 3O_2$

14.	$N_2 + H_2 \rightarrow NH_3$	12.	$Fe_2O_3 + CO \rightarrow Fe + CO_2$
	N_2 + $3H_2 \rightarrow 2NH_3$		Fe_2O_3 + 3 CO \rightarrow 2Fe + 3 CO ₂
13.	$Li + H_2O \rightarrow LiOH + H_2$	14.	CO_2 + $H_2O \rightarrow C_6H_{12}O_6$ + O_2
	$2Li + 2H_2O \rightarrow 2LiOH + H_2$		$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

6. What do each of the state mean?

State symbol	meaning
S	Solid
1	Liquid
g	Gas
aq	Aqueous, a solution formed when a solid dissolves in water

<u>Paper 3 – Topic 1 atomic structure</u>

- 1. What discovery caused the Dalton model of the atom to change over time?
- 2. Draw the structure of an atom of lithium. Include the correct number of protons, neutrons and electrons and label the nucleus and energy levels.

Diagram of labelled atom

3. Complete the following table

Particle	Location in the atom	Mass	Charge
Proton			
Neutron			
Electron			

- 4. Explain why atoms have no overall charge
- 5. The nucleus of an atom is very _____ compared to the overall size of the atom.
- 6. Where is most of the mass of an atom found?

7. Describe the meaning of the following terms

Atomic number	
Mass number	
Relative atomic	
mass	

8. What is the definition of an atom?

9. What is the definition of an element?

10. What is the definition for an isotope?

11.Calculate the number of protons, neutrons and electrons in two isotopes of carbon.

Atom		Atom
12		14
С		С
6		6
	protons	
	Neutrons	
	electrons	

- 12. What is the formula used to calculate the relative atomic mass of an element from the relative mass and abundance of its isotope?
- 13. The mass and abundance of boron's isotopes are 19.9% boron-10 and 80.1% boron-11. Use this information to calculate the relative atomic mass for boron.
- 14. Mendeleev used the ______ of the elements to arrange them in the periodic table. He left ______ because he knew that some elements had not yet been discovered. He made ______ about the undiscovered elements and these were very close to the actual properties of that element.
- 15. Mendeleev believed that he had arranged the elements in order of ______. This was not always true due to the ______.
- 16. The periodic table contains elements in horizontal rows called ______ and vertical columns called ______ which have ______ chemical properties.
- 17. The metals are on the ______ of the periodic table whilst the non-metals are on the ______.

18.Describe the relationship between an atoms location in the periodic table and it electron structure. You should use calcium (2, 8, 8, 2) as your example and refer to the period and group which calcium is found in. (2)

19. Complete the electron configurations for the elements in the table.

Element	Electron structure
Carbon	
Sodium	
Argon	
Potassium	

Paper 3 – Topic 1 atomic structure answers

- What discovery caused the Dalton model of the atom to change over time? *The discovery of sub atomic particles – electrons, protons and neutrons.*
- 2. Draw the structure of an atom of lithium. Include the correct number of protons, neutrons and electrons and label the nucleus and energy levels.

3. Complete the following table

Particle	Location in the atom	Mass	Charge	
Proton	nucleus	1	+1	
Neutron	nucleus	1	0	
Electron	Energy level	1/1840	-1	

- **4.** Explain why atoms have no overall charge (1) *they have the same number of positive protons as they have negative electrons.*
- 5. The nucleus of an atom is very *small* compared to the overall size of the atom.
- 6. Where is most of the mass of an atom found? inside the nucleus
- 7. Describe the meaning of the following terms

Atomic number	The number of protons in the nucleus
Mass number	The number of protons and neutrons
Relative atomic mass	This is the average mass of the atoms (or isotopes) in an element relative to 1/12 th the mass of carbon-12.

8. What is the definition of an atom?

an atom is the simplest particle of an element which has the same chemical properties as the element

- 9. What is the definition of an element?an element is a substance which contains only one type of atom
- 10. What is the definition for an isotope?

Isotopes are atoms of the same element which have different numbers of neutrons but the same number of protons.

11.Calculate the number of protons, neutrons and electrons in two isotopes of carbon.

Atom		Atom
12		14
С		С
6		6
6	protons	6
6	Neutrons	8
6	electrons	6

12. What is the formula used to calculate the relative atomic mass of an element from the relative mass and abundance of its isotope?

Relative	= <u>% abundance atom :</u>	<u>1</u> x atomic mass atom 1 + <u>% abundance atom 2</u> x atomic mass atom 2
atomic	100	100
mass		

13. The mass and abundance of boron's isotopes are 19.9% boron-10 and 80.1% boron-11. Use this information to calculate the relative atomic mass for boron.

relative atomic mass = <u>19.9</u> x 10 + <u>80.1</u> x 11 = 10.8 100 100

- 14. Mendeleev used the *properties* of the elements to arrange them in the periodic table. He left *gaps* because he knew that some elements had not yet been discovered. He made *predictions* about the undiscovered elements and these were very close to the actual properties of that element.
- 15. Mendeleev believed that he had arranged the elements in order of increasing *relative atomic mass*. This was not always true due to the *relative abundance of isotopes for some pairs of elements*.
- 16. The periodic table contains elements in horizontal rows called *periods* and vertical columns called *groups* which have similar chemical properties.
- 17. The metals are on the *left* of the periodic table whilst the non-metals are on the *right*.

 Describe the relationship between an atoms location in the periodic table and it electron structure. You should use calcium (2, 8, 8, 2) as your example and refer to the period and group which aluminium is found in. (2)

calcium is in group 2 because it has two electrons in the outer energy level. Calcium is in the fourth period because it has four energy levels.

19. Complete the electron configurations for the elements in the table.

Element	Electron structure	
Carbon	2, 4	
Sodium	2, 8, 1	
Argon	2, 8, 8	
Potassium	2, 8, 8, 1	

Paper 3 – Topic 1 ionic bonding

- 1. How is an ionic bond formed?
- 2. What is meant by
 - a) cation ______ b) anion ______

3. What type of ion will an atom form if it gains electrons? Explain your answer.

4. What type of ion will an atom form if it loses electrons? Explain your answer.

5. What is the definition of an ion?

6. Complete the following table for the ions listed.

lon	Formula	Mass	Atomic		Number of		Electron
	of ion	number	number	Protons	Neutrons	electrons	arrangement
		of atom	for atom				
Sodium		23	11				
Magnesium		24	12				
Oxide		16	8				
Chloride		35	17				
Beryllium		9	4				
Fluoride		19	9				
Sulfide		32	16				
Potassium		39	19				
Lithium		7	3				
Aluminium		27	13				
Nitride		14	7				

7. Draw diagrams to show the electron arrangement for each stage of the reaction between sodium and chlorine.

Sodium atom before bonding	Chlorine atom before bonding	Sodium ion after bonding	Chloride ion after bonding

- 8. Explain why the sodium ion and chloride ion become charged.
- 9. Describe how an ionic compound is held together.
- 10.Use the information below to find the formula of the compounds in the table.

Information				
	Mg ²⁺ O ²⁻ Na ⁺ F ⁻ CO ₃ ²⁻ OH ⁻ SO ₄ ²⁻			
Sodium fluoride	Magnesium fluoride	Sodium carbonate	Magnesium oxide	
Sodium sulfate	Magnesium sulfate	Sodium oxide	Magnesium hydroxide	

11. Draw a diagram of an ionic lattice and describe what is meant by the phrase 'ionic lattice'.

12.Explain why sodium chloride has a high melting and boiling point. (2)

13.Complete the following table

	Does it conduct electricity	Explanation
Solid Sodium chloride		
Molten Sodium chloride		
Dissolved sodium chloride		

Paper 3 – Topic 1 ionic bonding answers

- How is an ionic bond formed?
 Metals atoms transfer electrons to non-metal atoms.
- 2. What is meant by
 - a) cation *a positively charged metal ion*
 - b) anion *a negatively charged non-metal ion*
- 3. What type of ion will an atom form if it gains electrons? Explain your answer. *It will form a negative ion because electrons are negative*
- 4. What type of ion will an atom form if it loses electrons? Explain your answer. *it will form a positive ions as it loses negative electrons*
- 5. What is the definition of an ion? *A charged particle*
- 6. Complete the following table for the ions listed.

lon	Formula	Mass	Atomic		Number of		Electron
	of ion	number	number	Protons	Neutrons	electrons	arrangement
		of atom	for atom				
Sodium	Na⁺	23	11	11	12	10	2, 8
Magnesium	Ma ²⁺	24	12	12	17	10	2.8
Magnesium	ivig	24	12	12	12	10	2,0
Oxide	0 ²⁻	16	8	8	8	10	2, 8
Chloride	Cľ	35	17	17	18	18	2, 8, 8
	D . 2+	0					
Beryllium	Ber	9	4	4	5	2	2
Fluoride	F	19	9	9	10	10	2, 8
	-2						
Sulfide	S2-	32	16	16	16	18	2, 8, 8
Potassium	K ⁺	39	19	19	20	18	2, 8, 8
			_	-	-	_	, - , -
Lithium	Li⁺	7	3	3	4	2	2
Aluminium	Al ³⁺	27	13	13	14	10	2.8
							_, .
Nitride	N ³-	14	7	7	7	10	2, 8

7. Draw diagrams to show the electron arrangement for each stage of the reaction between sodium and chlorine.

Sodium atom before	Chlorine atom before	Sodium ion after	Chloride ion after
bollullig	Donung	boliding	Donung
Sodium atom Na 2,8,1	chlorine atom, Cl 2,8,7	Sodium ion Na [2,8]*	chloride ion, Cl ⁻ [2,8,8] ⁻

- Explain why the sodium ion and chloride ion become charged.
 The sodium ion has a positive charge because it has lost electrons
 The chloride ion has a negative charge because it has gained an electron
- Describe how an ionic compound is held together.
 there is an electrostatic attraction between the positive sodium ions and negative chloride ions

Information				
	Mg ²⁺ O ²⁻ Na ⁺ F ⁻	CO_3^{2-} OH ⁻ SO_4^{2-}		
Sodium fluoride	Magnesium fluoride	Sodium carbonate	Magnesium oxide	
NaF	MgF₂	Na ₂ CO ₃	MgO	
Sodium sulfate	Magnesium sulfate	Sodium oxide	Magnesium hydroxide	
Na ₂ SO ₄	MgSO₄	Na ₂ O	Mg(OH)₂	

10. Use the information below to find the formula of the compounds in the table.

11. Draw a diagram of an ionic lattice and describe what is meant by the phrase 'ionic lattice'.

An ionic lattice is a regular repeated pattern of positive and negative ions which are held together by electrostatic attractions.

12.Explain why sodium chloride has a high melting and boiling point. (2) The electrostatic attraction between the ions is strong and requires a lot of energy to break

13.Complete the following table

	Does it	Explanation
	conduct	
	electricity	
Solid Sodium chloride	No	Ions are held in a lattice by an electrostatic attraction.
		They are not able to move
Molten Sodium	Yes	The electrostatic attractions have been broken and the
chloride		ions are free to move.
Dissolved sodium	Yes	The electrostatic attractions have been broken and the
chloride		ions are free to move.

Paper 3 – topic 1 covalent bonding

- 1. What is a covalent bond?
- 2. What is formed when a covalent bond is formed between atoms?
- 3. Draw diagrams to show the covalent bonds in the following molecules. Hydrogen has been completed for you.

Hydrogen molecule	Hydrogen chloride
Water	Methane
Oxygen	Carbon Dioxide

4. Complete the table below to explain why simple covalent compounds have the following properties:

Property	Reason
Low melting and boiling point	
Poor conductors of electricity	

5. Diamond and graphite are different forms of ______. They are examples of

_____ molecules.

6. Draw a diagram to show the structure of diamond and graphite which are both giant covalent substances.

Diamond	Graphite

7. Explain how the structures of diamond and graphite can be used to explain the following properties.

Diamond	Graphite
Very high melting	and boiling point
Hard substance	Softer substance
<u>Reason</u>	<u>Reason</u>
Will not conduct electricity	Will conduct electricity
<u>Reason</u>	<u>Reason</u>

8. Explain why diamond and graphite have the following uses.

Substance	Use	Reason
Diamond	Cutting tools	
Graphite	Electrodes	
	lubricant	

9. What are fullerenes?

Fullerene name	Diagram	Structure, bonding	Properties	Uses
Buckminster				
Nanotube				
Graphene				

10. Complete the table below to show the structures and properties of the fullerenes.

 11. Most metals are _______ solids and have ______ melting points, ______

 density and are _______ conductors of electricity. Non-metals have ______

 boiling points and are _______ conductors of electricity.

12.Draw a labelled diagram to show the structure of a metal.

13. Use the structure of metals to explain why metals have the following properties

Property	Reason
Malleable	
Conduct electricity	

14.Complete the table below.

Substance	Melting point (°C)	Boiling point (°C)	Solubility in water	Does it conduct electricity as a solid?	Does it conduct electricity in solution?	Type of bonding in substance
Sodium chloride						
Magnesium sulfate						
Hexane						
Liquid paraffin						
Silicon (IV) oxide (sand)						
Copper Sulfate						
Sucrose (sugar)						

Paper 3 – topic 1 covalent bonding answers

- What is a covalent bond?
 A covalent bond is formed when two atoms share a pair of electrons.
- 2. What is formed when a covalent bond is formed between atoms? *A molecule*
- 3. Draw diagrams to show the covalent bonds in the following molecules. Hydrogen has been completed for you.

4. Complete the table below to explain why simple covalent compounds have the following properties:

Property	Reason
Low melting and boiling point	There are weak forces of attraction between molecules which do not require a lot of energy to break them.
Poor conductors of electricity	There are no free electrons because they are used in bonding.

5. Diamond and graphite are different forms of *carbon*. They are examples of *giant covalent* molecules.

6. Draw a diagram to show the structure of diamond and graphite which are both giant covalent substances.

7. Explain how the structures of diamond and graphite can be used to explain the following properties.

Diamond	Graphite	
Very high melting	and boiling point	
<u>Reason</u>		
There are lots of strong covalent bonds which nee	ed to be broken. This requires a lot of energy.	
	r	
Hard substance	Softer substance	
<u>Reason</u>	<u>Reason</u>	
The structure of the atoms is a rigid structure which stops the atoms from moving.	The atoms are arranged in layers. The layers are held together by weak forces of attraction which are means the layers can slide.	
Will not conduct electricity	Will conduct electricity	
<u>Reason</u>	<u>Reason</u>	
Each carbon atom has 4 bonds so there are no	Each carbon atom has 3 bonds to there are	
free electrons.	free, delocalised electrons which can move.	

8. Explain why diamond and graphite have the following uses.

Substance	Use	Reason
Diamond	Cutting tools	Diamond is a hard material due to its rigid structure.
Graphite	Electrodes	Each carbon has three bonds so there are free electrons which can move and conduct electricity.
	lubricant	The layers can slide as they are only held together by weak forces of attraction.

9. What are fullerenes?

A fullerene is a simple carbon molecule in which each carbon has three covalent bonds.

10. Complete the table below to show the structures and properties of the fullerenes.

Fullerene	Diagram	Structure, bonding	Properties	Uses
name				
Buckminster		Each carbon has three bonds its formula is C ₆₀ The molecule is a ball shape		
Nanotube		The graphene is rolled to form the nanotube	Very strong Good conductor of electricity very light	Sports equipment e.g. tennis rackets Semiconductors in electrical circuits
Graphene		It is a sheet of carbon atoms The sheet is just one atom thick	It is very light it is very strong It is a good conductor of electricity	

- 11. Most metals are *shiny* solids and have *high* melting points, *high* density and are *good* conductors of electricity. Non-metals have *low* boiling points and are *poor* conductors of electricity.
- 12. Draw a labelled diagram to show the structure of a metal.

13.Use the structure of metals to explain why metals have the following properties

Property	Reason
Malleable	The layers of ions are able to slide
Conduct electricity	The delocalised electrons are able to move about to carry the electrical current

14.Complete the table below.

Substance	Melting point (°C)	Boiling point (°C)	Solubility in water	Does it conduct electricity as a solid?	Does it conduct electricity in solution?	Type of bonding in substance
Sodium chloride	High	High	Yes	No	Yes	Ionic
Magnesium sulfate	High	High	Yes	No	Yes	Ionic
Hexane	Low	Low	Νο	No	No	Simple covalent
Liquid paraffin	Low	Low	No	No	No	Simple covalent
Silicon (IV) oxide (sand)	v.high	v.high	No	Νο	Νο	Giant covalent
Copper Sulfate	Decomposes	NA	Yes	No	Yes	Ionic
Sucrose (sugar)	Low	Low	Yes	No	No	Simple covalent

Paper 3 – Topic 1 masses and calculations

1. Calculate the relative formula mass for the following compounds

Compound	Relative formula mass	Compound	Relative formula mass
Methane,		ethanol,	
CH ₄		CH₃CH₂OH	
Sodium		iron(III)	
chloride,		sulphate,	
NaCl		$Fe_2(SO_4)_3$	
Ammonia,		lead nitrate,	
NH₃		Pb(NO ₃) ₂	
Sodium		aluminium	
hydroxide,		sulfate,	
NaOH		Al ₂ (SO ₄) ₃	
Magnesium		sulphur	
hydroxide,		dioxide, SO ₂	
Mg(OH) ₂			
Sulfuric acid,		iron(III) oxide,	
H ₂ SO ₄		Fe_2O_3	

2. What is the definition of one mole?

3. Calculate the mass for the number of moles of each substance below.

a) 0.8 moles of nitric acid, HNO ₃ ?	b) 0.25 moles of sulphur molecules, S ₈ ?
c) 0.175 mole of sulphate ions, SO4 ²⁻ ?	d) 4 mole of iron (II) chloride, FeCl ₂ ?
e) 4 moles of manganese (II) bromide, MnBr ₂ ?	f) 0.006 moles of ethane molecules, C_2H_6 ?

4. Calculate number of moles in the following mass of each substance.

a) beryllium in 18g?	b) iron in 32g?
c) carbon dioxide, CO ₂ , in 180g?	d) ethene, C ₂ H ₄ , in 75g?
e) calcium carbonate, CaCO ₃ , in 340g?	

5. What number is Avogadro's constant equal to (hint – this is equal to the number of particles in one mole of any substance)?

6. How many oxygen atoms are there in the following substances?

a) Two moles of oxygen molecules, O ₂ .	b) One mole of sulfur dioxide, SO ₂ .
c) Four moles of sulfuric acid, H ₂ SO ₄ .	d) Fours mole of water, H ₂ O.

7. How many particles are there in the following substances?

e) chloride ions in one of magnesium chloride, MgCl ₂ .	f) sulfur atoms in two moles of sulfur, S ₈ .
g) sodium ions in one mole of sodium carbonate, Na ₂ CO ₃ .	h) sulfate ions in three moles of aluminium sulfate, $Al_2(SO_4)_3$.

8. How many moles are there in each of the following?

i) 2.847 x 10 ²³ atoms of iron.	j) 3.433 x 10 ²⁴ molecules of water.
k) 5.317 x 10 ²⁴ atoms of carbon.	l) 6.134 x 10 ²³ molecules of ethanol.
m) 4.327 x 10 ²⁴ atoms of sodium.	n) 7.421 x 10 ²⁴ molecules of carbon dioxide.

9. What is the definition for the empirical formula?

10. Find the empirical formula for the following molecular formulas.

Formula of molecule	C_2H_6	$C_6H_{12}O_6$	C_6H_6	$C_3H_6O_2$
Empirical formula				

11. A compound contains 0.31g of phosphorus and 1.07g of chlorine. Calculate the empirical formula based on this information.

12. A compound contained 66.7g of carbon, 11.1g of hydrogen and 22.2g of oxygen. Its relative formula mass was 72. Calculate the empirical formula for this compound and then the molecular formula.

13. Write the word and balanced symbol equation, including state symbols, for the reaction between solid magnesium and oxygen gas to form solid magnesium oxide.

Word	+	\rightarrow	
equation			
Balanced			
symbol			
equation			

14. Complete the table below to show the risks and precautions you should take.

Risk	Precaution

15. Write a brief method to explain how to carry out the experiment to find the empirical formula for magnesium oxide.

16. What does the law of conservation of mass state?

17. Use the conservation of mass to explain what happens during a precipitation reaction.

18. Use the conservation of mass to explain what happens during a reaction which produces a gas and is carried out in an open test tube.

19. Calculate the mass of carbon dioxide you could obtain by adding hydrochloric acid to 15 g of calcium carbonate:

		Calcium carbonate CaCO ₃	+	+ Hyd	rochloric acid 2HCl	\rightarrow	Calcium chloride CaCl ₂	+ +	water H ₂ O	· + +	Carbon dioxide CO ₂
20. V	Vhy is the	e mass of proc	Juct	limited	by the re	acta	nt which	is n	ot in e>	ces	s?
 21. V	Vhat is th	e equation us	sed [.]	to calcul	ate the c	once	entration	of a	solutio	on?	

22.Calculate the concentration when 2.1g of of sodium hydrogencarbonate, NaHCO₃, in 250cm³ of solution?

Paper 3 – Topic 1 masses and calculations answers

1.	Calculate the	relative formula	mass for the	following compounds
----	---------------	------------------	--------------	---------------------

Compound	Relative formula mass	Compound	Relative formula mass
Methane,		ethanol,	
CH ₄	1xC=1x12=12	CH₃CH₂OH	2xC=2x12=24
	4xH=4x1=4		6xH=6x1=6
	Total = 16		1xO=1x16=16
			Total = 46
Sodium		iron(III)	
chloride,	1xNa=1x23=23	sulphate,	2xFe=2x56=112
NaCl	1xCl=1x35.5=35.5	Fe ₂ (SO ₄) ₃	3xS=3x32=96
	total = 58.5		12xO=12x16=192
			Total = 400
Ammonia,		lead nitrate,	4 84 4 307 307
NH ₃	1xN=1x14=14	$Pb(NO_3)_2$	1xPb=1x20/=20/
	3xH=3x1=3		2xN=2x14=28
	10tal = 17		6XU=6X16=96
			10tal = 331
Sodium		aluminium	
hvdroxide.	1xNa=1x23=23	sulfate.	2xAl=2x27=54
NaOH	1xO=1x16=16	Al ₂ (SO ₄) ₂	3xS=3x32=96
	1xH=1x1=1		12xO=12x16=192
	Total = 40		Total = 342
Magnesium		sulphur	
hydroxide,	1xMg=1x24=24	dioxide, SO ₂	1xS=1x32=32
Mg(OH) ₂	2xO=2x16=32		2xO=2x16=32
	2xH=2x1=2		Total = 64
	Total = 58		
Sulfuric acid,		iron(III) oxide,	
H ₂ SO ₄	2xH=2x1=2	Fe ₂ O ₃	2xFe=2x56=112
	1xS=1x32=32		3xO=3x16=48
	4x0=4x16=64		Total = 160
	Total = 98		

- What is the definition of one mole?
 one mole of a substance contains 6.02 x 10²³ atoms
- 3. Calculate the mass for the number of moles of each substance below.

a) 0.8 moles of nitric acid, HNO ₃ ?	b) 0.25 moles of sulphur molecules, S_8 ?
mass = no of moles x mass 1 mole	mass = no of moles x mass 1 mole
= 0.8 x 63	= 0.25 x 63
= 50.4g	= 64g
c) 0.175 mole of sulphate ions, SO ₄ ²⁻ ? <i>mass = no of moles x mass 1 mole</i> <i>= 0.175 x 96</i> <i>= 16.8g</i>	d) 4 mole of iron (II) chloride, FeCl ₂ ? mass = no of moles x mass 1 mole = 4 x 127 = 508g
---	---
e) 4 moles of manganese (II) bromide, MnBr ₂ ? mass = no of moles x mass 1 mole	f) 0.006 moles of ethane molecules, C ₂ H ₆ ? mass = no of moles x mass 1 mole = 0.006 x 30
= 4 x 215 = 860g	= 0.18g

4. Calculate number of moles in the following mass of each substance.

a) beryllium in 18g?	b) iron in 32g?
No of moles = <u>mass</u> Mass of 1 mole = <u>18</u> = 2 9	No of moles = <u>mass</u> Mass of 1 mole = <u>32</u> = 0.57 56
c) carbon dioxide, CO ₂ , in 180g?	d) ethene, C ₂ H ₄ , in 75g?
No of moles = <u>mass</u> Mass of 1 mole	No of moles = <u>mass</u> Mass of 1 mole
= <u>180</u> = 4.09 44	= <u>75</u> = 2.68 28
e) calcium carbonate, CaCO ₃ , in 340g?	
No of moles = <u>mass</u> Mass of 1 mole = <u>340 </u> = 3.4 100	

5. What number is Avogadro's constant equal to (hint – this is equal to the number of particles in one mole of any substance)?

6.02 x10²³

6. How many oxygen atoms are there in the following substances?

e) Two moles of oxygen molecules, O ₂ .	f) One mole of sulfur dioxide, SO ₂ .
No = number x Avogadro's of atoms of moles constant	No = number x Avogadro's of atoms of moles constant
$= 4 \times 6.02 \times 10^{23}$	$= 2 \times 6.02 \times 10^{23}$
= 2.4 x 10 ²⁴ atoms	= 1.2 x 10 ²⁴ atoms
g) Four moles of sulfuric acid, H ₂ SO ₄ .	h) Fours mole of water, H ₂ O.
No = number x Avogadro's of atoms of moles constant	No = number x Avogadro's of atoms of moles constant
$= 16 \times 6.02 \times 10^{23}$	$= 4 \times 6.02 \times 10^{23}$
= 2.4 x 10 ²⁴ atoms	= 2.4 x 10 ²⁴ atoms

7. How many particles are there in the following substances?

e) chloride ions in one mole of magnesium chloride, MgCl ₂ .	f) sulfur atoms in two moles of sulfur, S_8 .
No = number x Avogadro's of ions of moles constant	No = number x Avogadro's of atoms of moles constant
$= 2 \times 6.02 \times 10^{23}$	$= 16 \times 6.02 \times 10^{23}$
= 1.2 x 10 ²⁴ atoms	= 9.62 x 10 ²⁴ atoms
g) sodium ions in one mole of sodium carbonate, Na ₂ CO ₃ .	h) sulfate ions in three moles of aluminium sulfate, $Al_2(SO_4)_3$.
No = number x Avogadro's of ions of moles constant	No = number x Avogadro's of ions of moles constant
$= 2 \times 6.02 \times 10^{23}$	$= 9 \times 6.02 \times 10^{23}$
= 1.2 x 10 ²⁴ atoms	= 5.4 x 10 ²⁴ atoms

8. How many moles are there in each of the following?

i) 2.847 x 10 ²³ atoms of iron.	j) 3.433 x 10 ²⁴ molecules of water.
No of moles = <u>No of particles</u> Avogadro's constant	No of moles = <u>No of particles</u> Avogadro's constant
$= \frac{2.847 \times 10^{23}}{6.02 \times 10^{23}} = 0.47$	$= \frac{3.433 \times 10^{24}}{6.02 \times 10^{23}} = 5.7$
k) 5.317 x 10 ²⁴ atoms of carbon.	l) 6.134 x 10 ²³ molecules of ethanol.
No of moles = <u>No of particles</u> Avogadro's constant	No of moles = <u>No of particles</u> Avogadro's constant
$= \frac{5.317 \times 10^{23}}{6.02 \times 10^{23}} = 8.8$	$= \frac{6.134 \times 10^{23}}{6.02 \times 10^{23}} = 1.01$
m) 4.327 x 10 ²⁴ atoms of sodium.	n) 7.421 x 10 ²⁴ molecules of carbon dioxide.
No of moles = <u>No of particles</u> Avogadro's constant	No of moles = <u>No of particles</u> Avogadro's constant
$= \frac{4.327 \times 10^{24}}{6.02 \times 10^{23}} = 7.18$	$= \frac{7.421 \times 10^{24}}{6.02 \times 10^{23}} = 12.3$

- 9. What is the definition for the empirical formula? *the simplest ratio for the number and type of atoms in a formula*
- 10. Find the empirical formula for the following molecular formulas.

Formula	C_2H_6	$C_6H_{12}O_6$	C ₆ H ₆	$C_3H_6O_2$
of molecule				
Empirical	CH₃	CH₂O	СН	C ₃ H ₆ O ₂
formula				

11. A compound contains 0.31g of phosphorus and 1.07g of chlorine. Calculate the empirical formula based on this information.

	Phosphorus	Chlorine	
mass	0.31	1.07	
Relative atomic mass	31	35.5	
No of moles	0.31/31 = 0.01	1.07/35.5 = 0.03	
Divide by smallest number	0.01/0.01 = 1	0.03/0.01 = 3	
Empirical formula	PCI ₃		

12. A compound contained 66.7g of carbon, 11.1g of hydrogen and 22.2g of oxygen. Its relative formula mass was 72. Calculate the empirical formula for this compound and then the molecular formula.

	Carbon	Hydrogen	oxygen
mass	66.7	11.1	22.2
Relative atomic mass	12	1	16
No of moles	66.7/12 = 5.6	11.1/1 = 11.1	22.2/16=1.4
Divide by smallest	5.6/1.4 = 4	11.1/1.4 = 8	1.4/1.4=1
number			
Empirical formula		C₄H ₈ O	

Total mass of the empirical formula = C x 4 = 12 X4 = 48 H x 8 = 1 x 8 = 8

Total mass = 72

Because the mass of the empirical formula is the same as the mass of the molecular formula the molecule formula is also C_4H_8O

13. Write the word and balanced symbol equation, including state symbols, for the reaction between solid magnesium and oxygen gas to form solid magnesium oxide.

Word equation	Magnesium	+	Oxygen	→	Magnesium oxide
Balanced symbol equation	2Mg (s)	+	O₂ (g)	→	2MgO (s)

14. Complete the table below to show the risks and precautions you should take.

Risk	Precaution
Magnesium is flammable	Wear safety glasses
Maanacium hurne with	Do not look directly at
bright flame	DO NOT 100K airectly at

15. Write a brief method to explain how to carry out the experiment to find the empirical formula for magnesium oxide.

measure the mass of the magnesium and crucible before the experiment Heat the crucible strongly until the magnesium has reacted fully Carefully lift the lid of the crucible to allow oxygen in to help the magnesium to react Once reaction has finished find the mass of the crucible and magnesium oxide after the experiment

- 16.What does the law of conservation of mass state? *that mass cannot be created or destroyed*
- 17. Use the conservation of mass to explain what happens during a precipitation reaction. *The mass at the end of the reaction is the same as the mass at the start of the reaction*
- 18. Use the conservation of mass to explain what happens during a reaction which produces a gas and is carried out in an open test tube.

The mass will be less after the experiment as the gas has escaped.

19. Calculate the mass of carbon dioxide you could obtain by adding hydrochloric acid to 15 g of calcium carbonate:

Calcium+ Hydrochloric \rightarrow Calcium+ water+ CarboncarbonateacidchloridedioxideCaCO3+2HCl \rightarrow CaCl2+ H2O+ CO2

Relative formula mass of calcium carbonate = $1 \times Ca + 1 \times C + 3 \times O = 1 \times 40 + 1 \times 12 + 3 \times 16 = 100$ Relative formula mass of carbon dioxide = $1 \times C + 2 \times O = 1 \times 12 + 2 \times 16 = 44$

$$\frac{15}{100} = \frac{x}{44}$$

$$x = \frac{15 \times 44}{100} = 6.6g$$
100

- 20. Why is the mass of product limited by the reactant which is not in excess? *If there is not enough of a reactant then the chemical is not able to react fully*
- 21. What is the equation used to calculate the concentration of a solution? *amount of solute = volume of solution x concentration*
- 22.Calculate the concentration when 2.1g of of sodium hydrogencarbonate, NaHCO₃, in 250cm³ of solution?

Concentration = $\frac{amount}{volume}$ = $\frac{2.1}{(250/1000)}$ = 8.4gdm⁻³

Paper 3 – Topic 2 states of matter

1. Complete the diagram below to show the particle arrangement for solids, liquids and gases. Include the names for each change in state.

Energy _			
solid		liquid	gas
Energy			
2. What is name for early a second	ach change in stat	e	

Solid to liquid _	
Liquid to gas	
gas to liquid	
Liquid to solid	

3. Complete the table below to show the state of matter for each substance at the temperature show.

Substance	Temperature (°C)	Melting point (°C)	Boiling point (°C)	Physical state
Iron	1647	1538	2862	
Oxygen	-230	-219	-183	
Sodium	22	98	883	
Nitrogen	-195	-210	-196	
Methane	-173	-182	-162	

- 4. Describe the meaning of the word pure.
- 5. Describe what is meant by a mixture.

6. Label the heating curve to show when the substance is a solid, liquid and then gas.

Time (minutes)

- 7. Add labels to the above diagram to show the melting point and boiling point for the substance.
- 8. Link each separation technique to the mixture it can be used to separate.

Separation technique	Mixture
Simple distillation	A dissolved solid where you do not want
	the liquid.
Fractional distillation	A mixture of soluble substances e.g. inks.
Filtration	A dissolved solid where you want to keep
	the liquid or 2 liquids with very different
	boiling points.
Crystallisation	A large sample of a mixture of liquids with
	similar boiling points.
Paper chromatography	An insoluble solid and a liquid.

9. Calculate the $R_{\rm f}$ value for sample a, b and c below. Show your working out.

Sample	R _f value
А	
В	
с	

10. Explain how you can tell is a substance is pure or a mixture from the chromatography results.

11. Describe the steps used in simple distillation.

12. How is fractional distillation different to simple distillation?

13. During filtration a residue and filtrate are produced. Explain the meaning of these two words.

Filtrate	
Residue	

14.Describe the steps used in crystallisation.

15.Explain the meaning of the following words which are used in chromatography.

Mobile phase	
Stationary phase	

16.Describe each of the following steps which are used to make water portable.

Sedimentation	
Scamentation	
Filtration	
Fillration	
Chlorination	

17. Describe how sea water is made portable.

Paper 3 – Topic 2 states of matter answers

1. Complete the diagram below to show the particle arrangement for solids, liquids and gases. Include the names for each change in state.

	U
Solid to liquid	melting
Liquid to gas	boiling or evaporation
gas to liquid	condensation
Liquid to solid	freezing

3. Complete the table below to show the state of matter for each substance at the temperature show.

Substance	Temperature (°C)	Melting point (°C)	Boiling point (°C)	Physical state
Iron	1647	1538	2862	liquid
Oxygen	-230	-219	-183	Solid
Sodium	22	98	883	Solid
Nitrogen	-195	-210	-196	Gas
Methane	-173	-182	-162	liquid

- Describe the meaning of the word pure.
 a substance which contains only one type of particle.
- 5. Describe what is meant by a mixture. a substance which contains two or more materials which are not chemically joined together.

6. Label the heating curve to show when the substance is a solid, liquid and then gas.

A to B C to D E to F	solid state Liquid state Gas state		
Temperature (°C)	В	C	E
50		Time (minutes)	*

7. Add labels to the above diagram to show the melting point and boiling point for the substance.

B to C	melting point
B to C	melting point

- D to E boiling point
- 8. Link each separation technique to the mixture it can be used to separate.

Separation technique	Mixture
Simple distillation	A dissolved solid where you want to keep the liquid or 2 liquids with very different boiling points.
Fractional distillation	A large sample of a mixture of liquids with similar boiling points.
Filtration	An insoluble solid and a liquid.
Crystallisation	A dissolved solid where you do not want the liquid.
Paper chromatography	A mixture of soluble substances e.g. inks.

9. Calculate the R_f value for sample a, b and c below. Show your working out.

Sample	R _f value
А	R _f = <u>2.4</u> = 0.6
	4
В	R _f = <u>0.8</u> = 0.2
	4
С	R _f = <u>3.1</u> = 0.8
	4

10. Explain how you can tell is a substance is pure or a mixture from the chromatography results.
 Pure – the substance will only produce one spot. Mixture – the substance will separate in to two or more spots.

11. Describe the steps used in simple distillation.

Evaporation – the liquid with the lowest boiling point starts to evaporate and turn in to a gas. Condensation – The gas travels down the condenser, cools and turns in to a liquid.

- 12. How is fractional distillation different to simple distillation?An extra column is used which helps to improve the separation of the mixture.
- 13. During filtration a residue and filtrate are produced. Explain the meaning of these two words.

Filtrate	This is the substance which passes through the filter paper and is collected in the conical flask.
Residue	This is the insoluble substance which remains in the filter paper.

14.Describe the steps used in crystallisation.

dissolving – the sample is dissolved to form a solution

Heating – the solution is heated to evaporate the solution.

Filter – filter the remaining solution to remove any insoluble substances.

Crystallisation – leave the solution to evaporate to form crystals.

15. Explain the meaning of the following words which are used in chromatography.

Mobile phase	This is the solution which the sample is dissolved in.
Stationary phase	The paper on which the sample travels.

16.Describe each of the following steps which are used to make water portable.

Sedimentation	The water is left so that any insoluble substances sink to the bottom and are
	removed.
Filtration	The water travels through beds of sand and gravel to remove any remaining
	insoluble substances.
Chlorination	Chlorine is added to kill microorganisms.

17.Describe how sea water is made portable.

Distillation can be used.

Paper 3 – Topic 3 chemical change

- 1. Acids in solution contain _____ ions.
- 2. Alkalis in solution contain _____ ions.
- 3. The pH of a neutral solution is ______.
- 4. Acids have a pH between _____ and _____. Strong acids have a pH of _____ and weak acids have a pH of ______.
- 5. Alkalis have a pH between ______ and _____. Strong alkalis have a pH of ______ and weak alkalis have a pH of ______.
- 6. Complete the table below to show the colour change of indicators in acids and alkalis.

Indicator	Colour in acidic solution	Colour in alkaline solution
Litmus		
Methyl orange		
Phenolphthalein		

- 7. What happens to the hydrogen ion concentration as the pH of an acidic solution changes from pH 6 to pH 1?
- 8. What happens to the hydroxide ion concentration as the pH of an alkaline solution increases?
- 9. If the pH of a solution decreases by 1, by how much does the concentration of hydrogen ion increases?
- 10. What is the difference between a strong and weak acid?
- 11. What is the difference between a dilute and concentrated solution?

12. What is a base?

13. What is an alkali?

_

14. What is meant by a neutralisation reaction?

15.Complete the following chemical equations for the neutralisation reactions.

	Acid	+	Base/alkali	\rightarrow	Salt	+	water
Word	Hydrochloric	+	Sodium	\rightarrow		+	
equation	Acid		Hydroxide				
Balance							
symbol							
equation							
Word	Sulfuric	+	Magnesium	\rightarrow		+	
equation	Acid		oxide				
Balance							
symbol							
equation							
Word	Nitric	+	Lithium	\rightarrow		+	
equation	acid		hydroxide				
Balance							
symbol							
equation							

16. Complete the following neutralisation equations involving metal carbonate.

General equation	Acid	+	Base/alkali	\rightarrow	Salt	+	water	+	Carbon dioxide
Word equation	Hydrochloric Acid	+	calcium Carbonate	<i>></i>		+		+	
Balance symbol equation									
Word equation	Nitric Acid	+	Lithium Carbonate	<i>></i>		+		+	
Balance symbol equation									
Word equation	Sulfuric Acid	+	Magnesium Carbonate	→		+		+	
Balance symbol equation									

17. What is the ionic equation for the neutralisation reaction?

	Acid	+	Alkali	\rightarrow	water
Ionic		+		\rightarrow	
equation					

18. Describe the chemical test for hydrogen gas.

19. Describe the chemical test for carbon dioxide.

20. What does the word excess mean in a chemical reaction?

21. Describe the steps to produce a soluble salt from an acid solution and an insoluble base.

22. Describe the steps to produce a soluble salt from an acid solution and an alkali solution (soluble).

23. Complete the table below to show the solubility of different substances.

Substance	Soluble	Insoluble
All nitrates		
Chlorides		
Sulfates		
Carbonates		
Hydroxides		

24. Explain what is meant by a precipitation reaction.

25. Complete the word and symbol equations below. Include state symbols.

Silver	+	Sodium	\rightarrow	+	
nitrate (aq)		chloride (aq)			
	+		\rightarrow	+	
Iron	+	Sodium	\rightarrow	+	
sulfate (aq)		hydroxide (aq)			
	+		\rightarrow	+	
barium	+	Hydrochloric	\rightarrow	+	
chloride (aq)		acid (aq)			
	+		\rightarrow	+	
Copper	+	sodium	\rightarrow	+	
sulfate (aq)		hydroxide (aq)			
	+		\rightarrow	+	

26. Describe how a pure, dry sample of an insoluble salt can be made.

Paper 3 – Topic 3 chemical change answers

- 1. Acids in solution contain *hydrogen* ions.
- 2. Alkalis in solution contain *hydroxide* ions.
- 3. The pH of a neutral solution is **7.**
- 4. Acids have a pH between **1** and **6**. Strong acids have a pH of **1** and weak acids have a pH of **6**.
- Alkalis have a pH between 8 and 14. Strong alkalis have a pH of 14 and weak alkalis have a pH of 8.
- 6. Complete the table below to show the colour change of indicators in acids and alkalis.

Indicator	Colour in acidic solution	Colour in alkaline solution
Litmus	Red	Blue
Methyl orange	Red	yellow
Phenolphthalein	Colourless	pink

- What happens to the hydrogen ion concentration as the pH of an acidic solution changes from pH 6 to pH 1?
 - the hydrogen ion concentration increases
- 8. What happens to the hydroxide ion concentration as the pH of an alkaline solution increases? *The hydroxide ion concentration will increase*
- 9. If the pH of a solution decreases by 1, by how much does the concentration of hydrogen ion increases?
 the hydrogen ion concentration will increase by a factor of 10
- 10. What is the difference between a strong and weak acid? *Strong acids full dissociate into ions. Weak acids only partially dissociate*
- 11. What is the difference between a dilute and concentrated solution?*a concentrated solution will contain a more particles in a certain volume than a dilute solution*
- 12. What is a base?

A base is a substance that reacts with an acid to produce a salt and water

13. What is an alkali?

An alkali is a soluble base

14. What is meant by a neutralisation reaction? *It is the reaction between an acid and a base which forms a salt and water*

	Acid	+	Base/alkali	\rightarrow	Salt	+	water
Word	Hydrochloric	+	Sodium	\rightarrow	Sodium	+	Water
equation	Acid		Hydroxide		Chloride		
Balance	НСІ	+	NaOH	\rightarrow	NaCl		H₂O
symbol							
equation							
Word	Sulfuric	+	Magnesium	\rightarrow	Magnesium	+	Water
equation	Acid		oxide		Sulfate		
Balance	H₂SO₄	+	MgO	\rightarrow	MgSO₄		H₂O
symbol							
equation							
Word	Nitric	+	Lithium	\rightarrow	Lithium	+	Water
equation	acid		hydroxide		Nitrate		
Balance	HNO₃	+	LiOH	\rightarrow	LiNO₃	+	H₂O
symbol							
equation							

15.Complete the following chemical equations for the neutralisation reactions.

16. Complete the following neutralisation equations involving metal carbonate.

General equation	Acid	+	Base/alkali	\rightarrow	Salt	+	water	+	Carbon dioxide
Word equation	Hydrochloric Acid	+	calcium Carbonate	\rightarrow	Calcium Chloride	+	Water	+	Carbon Dioxide
Balance symbol equation	2HCl	+	CaCO₃	<i>→</i>	CaCl ₂		H₂O		CO₂
				-					
Word equation	Nitric Acid	+	Lithium Carbonate	\rightarrow	Lithium Nitrate	+	Water	+	Carbon Dioxide
Balance symbol equation	2HNO₃	+	Li₂CO₃	<i>></i>	2LiNO₃	+	H₂O		CO ₂
Word equation	Sulfuric Acid	+	Magnesium Carbonate	\rightarrow	Magnesium sulfate	+	Water	+	Carbon Dioxide
Balance symbol equation	H₂SO₄	+	MgCO₃	<i>→</i>	MgSO₄	+	H₂O	+	CO ₂

17. What is the ionic equation for the neutralisation reaction?

	Acid	+	Alkali	\rightarrow	water
Ionic	H⁺ (aq)	+	OH ⁻ (aq)	\rightarrow	H₂O(I)
equation					

- **18.** Describe the chemical test for hydrogen gas.
- Collect the hydrogen gas in a test tube Put a lighted splint into the testtube. If the gas is hydrogen, it will burn with a squeaky pop.
- 19. Describe the chemical test for carbon dioxide.Bubble the gas through limewaterIf the gas is carbon dioxide it will turn the limewater cloudy
- 20. What does the word excess mean in a chemical reaction? *Excess means that there is more of a chemical than you need to make the chemical reaction happen.*
- 21. Describe the steps to produce a soluble salt from an acid solution and an insoluble base.
 Add excess base to the acid solution
 Filter to remove the excess, unreacted base
 Leave the solution to evaporate to so the salt forms
- 22. Describe the steps to produce a soluble salt from an acid solution and an alkali solution (soluble).A titration must be used

Acid is placed in a burette and a pipette is used to accurately measure the correct amount of base

- Indicator is added to the base
- The acid is added to the base until the base is neutralised. The indicator tells us when this has happened
- Record the volume of acid added.

Repeat the experiment adding the same amount of acid but this time do not add indicator. Leave the neutralised solution to evaporate to form the salt.

23. Complete the table below to show the solubility of different substances.

Substance	Soluble	Insoluble
All nitrates	All nitrates	
Chlorides	Most chlorides	Silver and lead chloride
Sulfates	Most sulfates	Lead, barium and calcium sulfate
Carbonates	Sodium, potassium and ammonium carbonates	Most carbonates
Hydroxides	Sodium, potassium and ammonium hydroxides	Most hydroxides

24. Explain what is meant by a precipitation reaction.

A precipitation reaction involves reacting two solutions together to form an insoluble product

Silver	+	Sodium	\rightarrow	Silver	+	Sodium
nitrate (aq)		chloride (aq)		Chloride (s)		nitrate (aq)
AgNO₃ (aq)	+	NaCl (aq)	\rightarrow	AgCl (s)	+	NaNO₃ (aq)
Iron	+	Sodium	\rightarrow	Iron	+	Sodium
sulfate (aq)		hydroxide (aq)		hydroxide (s)		sulfate (aq)
FeSO₄ (aq)	+	NaOH (aq)	\rightarrow	FeOH (s)	+	NaSO₄ (aq)
Copper	+	sodium	\rightarrow	Copper	+	Sodium
sulfate (aq)		hydroxide (aq)		hydroxide (s)		Sulfate (aq)
CuSO₄ (aq)	+	2NaOH (aq)	\rightarrow	Cu(OH)₂ (s)	+	Na₂SO₄ (aq)

25. Complete the word and symbol equations below. Include state symbols.

26. Describe how a pure, dry sample of an insoluble salt can be made. *Carry out the precipitation reaction*

Filter to remove excess, unreacted solid Wash solid using distilled water Leave the solid to dry

Paper 3 – Topic 3 electrolytic processes

- 1. What is an electrolyte?
- 2. What is meant by electrolysis?
- 3. What type of electrical energy is used to carry out electrolysis?
- 4. Electrolysis causes compounds to decompose. What is meant by decompose?
- 5. Explain why solid ionic compounds do not conduct electricity.
- 6. Explain why dissolved or molten ionic compounds will conduct electricity.
- 7. What is meant by an anion and a cation?
- 8. What happens to anions during electrolysis?
- 9. What happens to cations during electrolysis?
- 10. Give the name of a material used as an inert electrode during electrolysis.
- 11. Why should inert electrodes be used during electrolysis?

12. Complete the table below to show the products formed during the electrolysis of the compound shown.

Electrolyte		Cathode	Anode
Copper chloride solution, CuCl ₂	Half equation		
(aq)	Type of reaction		
	Product formed		
Sodium chloride solution, NaCl	Half equation		
(aq)	Type of reaction		
	Product formed		
Sodium sulfate solution, Na ₂ SO ₄	Half equation		
(aq)	Type of reaction		
	Product formed		
Water acidified with sulfuric acid	Half equation		
	Type of reaction		
	Product formed		
Molten lead bromide, PbBr ₂ (I)	Half equation		
	Type of reaction		
	Product formed		

13. What is meant by oxidation?

14. What is meant by reduction?

15. Complete the table below for the electrolysis of copper sulfate solution using copper electrodes.

Electrolyte		Cathode	Anode
Copper sufate solution, CuSO ₄	Half equation		
(aq)	Type of reaction		
	Product formed		

16. Explain why happens to the mass of the cathode and anode during the electrolysis of copper sulfate using copper electrodes.

Cathode				

Anode	
	_

Paper 3 – Topic 3 electrolytic processes answers

- What is an electrolyte?
 An ionic compound that is either dissolved in solution of in a molten state.
- 2. What is meant by electrolysis? Using a direct current (D.C.) supply to break down (decompose) an electrolyte into simpler substances.
- What type of electrical energy is used to carry out electrolysis?
 Direct current
- 4. Electrolysis causes compounds to decompose. What is meant by decompose? *Break down the substances into simpler substances.*
- Explain why solid ionic compounds do not conduct electricity.
 The ions in a solid or held in place in the lattice by strong electrostatic forces which means that they cannot move.
- Explain why dissolved or molten ionic compounds will conduct electricity.
 When the ionic compound is dissolved or molten the ions are free to move because the electrostatic forces have been broken
- 7. What is meant by an anion and a cation?
 Anion a negatively charged ion
 Cation a positively charged ion
- 8. What happens to anions during electrolysis?Anions migrate to the anode (positive electrode)
- 9. What happens to cations during electrolysis?Cations migrate to the cathode (negative electrode)
- 10. Give the name of a material used as an inert electrode during electrolysis. *carbon*
- 11. Why should inert electrodes be used during electrolysis?So that the electrodes do not react with the electrolyte during electrolysis

12. Complete the table below to show the products formed during the electrolysis of the compound shown.

Electrolyte		Cathode	Anode
Copper chloride solution, CuCl ₂	Half equation	Cu²+ (aq) + 2e⁻ → Cu (s)	$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$
(aq)	Type of reaction	reduction	Oxidation
	Product formed	Copper	Chlorine
Sodium chloride solution, NaCl	Half equation	2H⁺ (aq) + 2e⁻ → H₂ (g)	$2Cl^{+}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$
(aq)	Type of reaction	reduction	Oxidation
	Product formed	Hydrogen	Chlorine
Sodium sulfate solution, Na ₂ SO ₄	Half equation	2H ⁺ (aq) + 2e ⁻ → H ₂ (g)	$4OH^{-}(aq) \rightarrow 2H_2O(l) + O_2$ $(g) + 4e^{-}$
(aq)	Type of reaction	reduction	Oxidation
	Product formed	Hydrogen	Oxygen
Water acidified with sulfuric acid	Half equation	2H⁺ (aq) + 2e⁻ → H₂ (g	$2O^{2}(aq) \rightarrow O_2(g) + 4e^{-1}$
	Type of reaction	reduction	Oxidation
	Product formed	Hydrogen	Oxygen
Molten lead bromide, PbBr ₂	Half equation	Pb ²⁺ (I) + 2e ⁻ → Pb (s)	2Br (I) → Br2 (g) + 2e
(I)	Type of reaction	reduction	Oxidation
	Product formed	Lead	Bromine

13. What is meant by oxidation?Oxidation is loss of electrons

14. What is meant by reduction?*Reduction is gaining electrons*

15.Complete the table below for the electrolysis of copper sulfate solution using copper electrodes.

Electrolyte		Cathode	Anode
		(pure cooper)	(impure copper)
Copper sufate	Half equation	Cu²+ (aq) + 2e ⁻ → Cu (s)	Cu (s) → Cu²+ (aq) + 2e ⁻
solution, CuSO ₄			
(aq)	Type of reaction	reduction	Oxidation
	Effect on	Gains mass	Loses mass
	electrode		

16. Explain why happens to the mass of the cathode and anode during the electrolysis of copper sulfate using copper electrodes.Cathode *mass increases as new copper is formed*

Anode *loses mass*

Paper 3 – Topic 3 obtaining and using metals

- 1. What is formed when a metal reacts with water?
- 2. Write a balanced equation for the reaction of sodium with water.

Sodium	+	Water	\rightarrow	+	
	+		\rightarrow	+	

3. What is formed when a metal reacts with an acid?

4. Write a word and balanced symbol equation for the reaction between magnesium and hydrochloric acid.

Magnesium	+	Hydrochloric acid	\rightarrow	+	
	+		\rightarrow	+	

- 5. Which metal is the most reactive metal in the reactivity series?
- 6. Why is hydrogen included in the reactivity series of metals?
- 7. What is meant by a displacement reaction?

8. What is an ore?

- 9. Why is gold found in the Earth's crust?
- 10. What happens during oxidation?
- 11. What happens during reduction?
- 12. Explain how iron is extracted from its ore.

13. Explain how aluminium is extracted from its ore.

14. Why is electrolysis used to extract aluminium but not iron.

15. Explain what is meant by phytoextraction.

16. Explain what is meant by bioleaching.

17. What is meant by corrosion?

18. Which metals in the reactivity series are less likely to undergo corrosion? Explain your answer.

19. Give some advantages of recycling metals.

20.Explain what is meant by a life time assessment for a product.

Paper 3 – Topic 3 obtaining and using metals answers

- What is formed when a metal reacts with water? hydrogen gas and a metal hydroxide
- 2. Write a balanced equation for the reaction of sodium with water.

Sodium	+	Water	\rightarrow	Sodium hydroxide	+	Hydrogen
Na	+	H ₂ O	\rightarrow	NaOH	+	H ₂

- 3. What is formed when a metal reacts with an acid? *a metal salt and hydrogen gas*
- 4. Write a word and balanced symbol equation for the reaction between magnesium and hydrochloric acid.

Magnesium	+	Hydrochloric acid	\rightarrow	Magnesium Chloride	+	Hydrogen
Mg	+	HCI	\rightarrow	MgCl ₂	+	H ₂

- 5. Which metal is the most reactive metal in the reactivity series? *Potassium*
- 6. Why is hydrogen included in the reactivity series of metals? *as a reference point. Metals below hydrogen do not react with water or acids*
- 7. What is meant by a displacement reaction?*a reaction in which a more reactive element displaces a less reactive element from its compound.*
- 8. What is an ore? Ores are rocks that are obtained from the Earth's crust that contain metals
- Why is gold found in the Earth's crust?
 Gold is unreactive so it does not combine with oxygen
- 10. What happens during oxidation? *An element gains oxygen*
- 11. What happens during reduction? **Oxygen is removed from a compound**
- 12. Explain how iron is extracted from its ore. Iron ore is haematite and it contains iron oxide Iron oxide is heated in a blast furnace with carbon Carbon is more reactive than iron The carbon displaces the iron from the iron oxide forming iron The iron has been reduced by the carbon

- 13. Explain how aluminium is extracted from its ore.
 Aluminium ore is bauxite and it contains aluminium oxide Electrolysis is used to extract the aluminium from the ore The aluminium oxide is reduced to form aluminium metal
- 14. Why is electrolysis used to extract aluminium but not iron.Aluminium is more reactive than ironAluminium would not be reduced by carbon
- 15. Explain what is meant by phytoextraction. *Plants are grown that absorb metal compounds The plants are then burnt to form ash The metal can be extracted from the ash*
- 16. Explain what is meant by bioleaching.
 Bacteria is grown on metal ore
 Bacteria produce a solution that contains the metal ions
 The metal can be produced from the metal ions
- 17. What is meant by corrosion?*Reactive metals will react with oxygenThis is an oxidation reaction*
- 18. Which metals in the reactivity series are less likely to undergo corrosion? Explain your answer. *The metals at the bottom of the reactivity series because they are less reactive*
- 19. Give some advantages of recycling metals. Natural reserves in Earth's crust will last longer Mining damages the environment e.g. noise and dust pollution Recycling uses less energy than extracting new metal from its ore Less waste in landfill
- 20. Explain what is meant by a life time assessment for a product. *This considers the effect on the environment of obtaining the raw materials, manufacturing the product, using the product and disposing of the product when it is no longer useful*

Paper 3 – Topic 4 reversible reactions and equilibria

- 1. What is meant by a reversible reaction?
- 2. What is the symbol used to show that a reaction is reversible?
- 3. What is meant by a dynamic equilibrium?
- 4. Complete the word and balanced symbol equation for the Haber process.

	+	\rightarrow	Ammonia
	+	\rightarrow	

- 5. Where is the nitrogen obtained from?
- 6. Where is the hydrogen obtained from?
- 7. What three conditions are used during the haber process?
- 8. Does the Haber process favour high or low pressure? Explain your answer.
- 9. Does the Haber process favour high or low temperatures? Explain your answer.
- 10. Why is a catalyst added to the reaction?
- 11. Why are compromise conditions used in the process?

Paper 3 – topic 4 reversible reactions and equilibria answers

- What is meant by a reversible reaction?
 A reaction which can work in both the forward and backward direction
- 2. What is the symbol used to show that a reaction is reversible?➡
- 3. What is meant by a dynamic equilibrium? both the forward and backward reactions take place at the same rate the concentration of reactants and products remains constant
- 4. Complete the word and balanced symbol equation for the Haber process.

Hydrogen	+	Nitrogen	\rightarrow	Ammonia
3H2	+	N ₂	\rightarrow	2NH₃

- 5. Where is the nitrogen obtained from? *from air*
- 6. Where is the hydrogen obtained from? *from natural gas*
- 7. What three conditions are used during the haber process? temperature 450oC pressure 200 atmosphere Iron catalyst
- 8. Does the Haber process favour high or low pressure? Explain your answer. There are 4 moles of reactant gases and 2 moles of product gases in the equation The reaction favours an increase in pressure When the pressure is increased the equilibrium position moves to the right to try and reduce the pressure (there are less moles of gas) this means more ammonia is formed
- 9. Does the Haber process favour high or low temperatures? Explain your answer. The forward direction is exothermic which means it produces heat The reaction favours lower temperatures When the temperature is lowered the equilibrium position moves to the right to try and increase the temperature this means more ammonia is formed
- 10. Why is a catalyst added to the reaction? *The catalyst sets the equilibrium up much more quickly*

11. Why are compromise conditions used in the process?

High pressure – high pressures are expensive to generate. So a compromise is made to balance pressure and cost. The compromise is 200 atmospheres.

Low temperature – a low temperature will mean the reaction will have a slow rate of reaction. A compromise is made so that the reaction is not too slow. The compromise is 450°C.

Paper 3 Topic 5 Triple chemistry only

1.	Transition metals have the following properties:
i) _	
ii)	
iii)	
iv)	

2. What is the oxidation of metals called?

3. Which two conditions are needed for iron to rust?

4. State 3 ways in which the rusting of iron can be prevented.

i)		
ii)		
iii)		

5. Name the process which is used to improve the appearance and/or the resistance to corrosion of metals.

6.	Describe the process of electroplating.
i) _	
ii)	
iii)	
iv)	

7. Draw a labelled diagram to show the particle arrangement in an alloy.

8. Explain why alloys are often stronger than the pure metal.

9. What is the advantage of making the following iron alloys?

Alloy	Advantage
Stainless steel – iron with	
chromium/nickel	
Steel – iron with carbon	

10. Give the property and use for each material list below.

Material	Property	Uses
Aluminium		
Copper		
Gold		
Magnalium		
(5%		
magnesium)		
Brass		

11. What is the equation used to calculate concentration?

12. What are the units for concentration?

13. Calculate the concentration of 45g of sodium chloride in 350cm³ of water in gdm⁻³.

14. Calculate the concentration of 25g of NaOH in 475cm³ in moldm⁻³.

15. Convert the concentration of 0.05 moldm⁻³ sodium carbonate, Na₂CO₃, in to gdm⁻³.
16. What is the concentration in moldm⁻³ of some potassium hydroxide, KOH, solution with a concentration of 11.2 gdm⁻³ 0.200moldm⁻³?

18. What is the ionic equation that takes place during the neutralisation reaction in a titration?

19. What is the equation used to calculate the number of moles in a solution?

20. What is the equation used to calculate the percentage yield for a reaction?

21. What is the actual yield?

22. What is the theoretical yield?

23. Why is the actual yield always less than the theoretical yield?

- i) _____
- ii) _____
- iii) _____

24. What is the equation used to calculate the atom economy for a reaction?

25.	What is	the d	efinition	for	atom	economy?
-----	---------	-------	-----------	-----	------	----------

26. What factors have to be considered when choosing a reaction pathway?

- i) ______ ii) ______
- iii) _____ iv) _____
- v) _____

27. What is the molar volume of a gas?

28. What is the Haber process?

29. Why are compromise conditions used for the Haber process?

Temperature 450°C – ______

Pressure	200	atms	_

30. Complete the table below to show how changing conditions effects the reversible reaction.

Type of	Condition	How does it effect the	Effect on product
reaction		equilibrium position?	yield
Endothermic in	Lowering the temperature		
direction	Increasing the temperature		
Exothermic in the forward direction	Lowering the temperature		
	Increasing the temperature		
More moles on the right	Lowering the pressure		

	Increasing the pressure	
	Lowering the	
More moles on	pressure	
the left	Increasing the pressure	

31. Complete the table below to show how the rate of attainment of equilibrium is affected by each condition.

Condition	Effect on attainment of equilibrium
Increasing	
temperature	
Decreasing	
temperature	
Increasing	
pressure	
Decreasing	
pressure	
Increasing	
concentration	
Decreasing	
concentration	
Addition of a	
catalyst	

32. Which chemicals compounds do fertilisers commonly contain?

33. Why do fertilisers contain potassium, nitrogen and phosphorus compounds?

34. Complete the equation for the reaction below:

Word equation	Ammonia	+	Nitric acid	\rightarrow	
Balanced		+		\rightarrow	
symbol					
equation					

35. What are the differences between the laboratory preparation and industrial preparation of ammonium sulfate?

Laboratory	
Industrial	

36. What does a fuel cell do?

37. How long will a fuel cell produce a voltage for?

38. What are the strengths and weaknesses of fuel cells?

Strengths	Weaknesses

Paper 3 Topic 5 Triple chemistry only answers

Transition metals have the following properties:
 i) high melting points ii) high density iii) they form coloured compounds iv) act as catalysts e.g. iron in the Haber process

2. What is the oxidation of metals called? *Corrosion of metals.*

3. Which two conditions are needed for iron to rust?The presence of oxygen and water.

4. State 3 ways in which the rusting of iron can be prevented. *i) application of oil to the surface of the metal ii) application of paint to the surface of the metal iii) sacrificial protection – using a more reactive metal*

5. Name the process which is used to improve the appearance and/or the resistance to corrosion of metals.

Electroplating

6. Describe the process of electroplating.
i) place the object to be electroplated at the cathode
ii) the electrolyte should contain the metal ions which will cover the object
iii) Turn the circuit on. The cations migrate to the cathode and are reduced.
iv) The object is covered in a thin layer of the new metal.

7. Draw a labelled diagram to show the particle arrangement in an alloy.

8. Explain why alloys are often stronger than the pure metal.
The different sized ions disrupt the layers of the metal.
This means that the layers can no longer slide.
This makes the alloy stronger.

9. What is the advantage of making the following iron alloys?

Alloy	Advantage
Stainless steel – iron with chromium/nickel	Stainless steel is resistant to corrosion
Steel – iron with carbon	The steel is stronger than the original iron

10. Give the property and use for each material list below.

Material	Property	Uses
Aluminium	Low density, resistant to	Cooking foil
	corrosion	
Copper	Good conductor of heat and	Electrical wires, water pipes
	electricity, does not react	
	with water	
Gold	Does not corrode, malleable	Jewellery
Magnalium	Lighter and more workable	Aircraft parts, scientific
(5%	than pure aluminium	equipment
magnesium)		
Brass	Good conductor, stronger	Musical instruments,
	than pure copper	plumbing and electrical
		components

11. What is the equation used to calculate concentration?

Concentration = <u>Amount</u> (g or mol) Volume (dm³)

12. What are the units for concentration? *gdm*⁻³ *or moldm*⁻³

13. Calculate the concentration of 45g of sodium chloride in 350cm³ of water in gdm⁻³.

Concentration = \underline{amount} = $\underline{45}$ = 129gdm⁻³ Volume (350/1000)

Do not forget to divide the volume by 1000cm³ to convert the volume to dm³

14. Calculate the concentration of 25g of NaOH in 475cm³ in moldm⁻³.

No of moles of NaOH = $\frac{mass}{mass}$ = $\frac{25}{(23+16+1)}$ = 0.625 moles

Concentration = $\frac{amount}{Volume}$ = $\frac{0.625}{1.32}$ = 1.32 moldm⁻³ Volume (475/1000)

Do not forget to divide the volume by 1000cm³ to convert the volume to dm³

15. Convert the concentration of 0.05moldm⁻³ sodium carbonate, Na₂CO₃, in to gdm⁻³. Mass = no of moles of Na₂CO₃ x mass of one mole = 0.05 x ((23x2)+12+(16x3)) = 5.3 gdm⁻³

16. What is the concentration in moldm⁻³ of some potassium hydroxide, KOH, solution with a concentration of 11.2 gdm⁻³ 0.200moldm⁻³?

No of moles of KOH = \underline{mass} = $\underline{11.2}$ = 0.2 moldm⁻³ Mass of 1 mole (39+16+1)

17. Describe the steps to carry out a titration.

i) Fill the burette with hydrochloric acid.

ii) Use a pipette to measure 25cm3 of sodium hydroxide and add this to a conical flask.

iii) Add a few drops of phenolphthalein indicator to the sodium hydroxide.

iv) Place the conical flask on a white tile under the burette.

v) Add the hydrochloric acid to the conical flask whilst swirling the contents of the flask.

vi) Stop adding the acid once the indicator has change colour from pink to clear.

vii) Repeat the process until you achieve 2 further results that are concordant.

18. What is the ionic equation that takes place during the neutralisation reaction in a titration?

$$H^+ + OH^- \rightarrow H_2 0$$

19. What is the equation used to calculate the number of moles in a solution?

Number of moles = <u>volume</u> (cm³) x concentration (moldm⁻³) 1000

20. What is the equation used to calculate the percentage yield for a reaction?

Percentage yield = <u>actual yield</u> x 100% Theoretical yield

21. What is the actual yield?

The amount of product produced during a chemical reaction.

22. What is the theoretical yield?

The amount of product produced based on the balanced chemical equation.

23. Why is the actual yield always less than the theoretical yield?

i) Incomplete reaction

ii) Loss of chemicals during the reaction

iii) unwanted side reactions

24. What is the equation used to calculate the atom economy for a reaction?

Atom economy = <u>mass of desired product</u> x 100 Total mass of products

25. What is the definition for atom economy?

The atom economy measures how many reactant atoms form a desired product.

26. What factors have to be considered when choosing a reaction pathway?

i) atom economy ii) yield iii) rate iv) equilibrium position v) usefulness of by products

27. What is the molar volume of a gas? *The volume occupied by one mole of molecules of any gas at room temperature and pressure.*

28. What is the Haber process?*A reversible reaction between nitrogen and hydrogen to form ammonia.*

29. Why are compromise conditions used for the Haber process?

Temperature 450°C – reaction would favour low temperature as it is exothermic in the forward direction. A low temperature would cause the rate of reaction to be too slow. Pressure 200 atms – reaction favours high pressure as there are less moles on the right. A high pressure would be expensive as pipes would need to be reinforced to withstand the pressure.

30. Complete the table below to show how changing conditions effects the reversible reaction.

Type of	Condition	How does it effect the	Effect on product
reaction		equilibrium position?	yield .
	Lowering the	Equilibrium shifts to the	Product decreases
Endothormic in	temperature	left to increase the	
the forward		temperature	
direction	Increasing the	Equilibrium shifts to the	Product increases
unection	temperature	right to decrease the	
		temperature	
	Lowering the	Equilibrium shifts to the	Product increases
Evothormic in	temperature	right to increase the	
the forward		temperature	
direction	Increasing the	Equilibrium shifts to the	Product decreases
unection	temperature	left to decrease the	
		temperature	

More moles on	Lowering the	Equilibrium moves to the	Product increases
the right	pressure	right to increase the	
		pressure	
	Increasing the	Equilibrium moves to the	Product decreases
	pressure	left to decrease the	
		pressure	
	Lowering the	Equilibrium moves to the	Product decreases
	pressure	left to increase the	
More moles on		pressure.	
the left	Increasing the	Equilibrium moves to the	Product increases
	pressure	right to decrease the	
		pressure	

31. Complete the table below to show how the rate of attainment of equilibrium is affected by each condition.

Condition	Effect on attainment of equilibrium
Increasing	Quicker attainment of the equilibrium
temperature	
Decreasing	Slower attainment of the equilibrium
temperature	
Increasing	Quicker attainment of the equilibrium
pressure	
Decreasing	Slower attainment of the equilibrium
pressure	
Increasing	Quicker attainment of the equilibrium
concentration	
Decreasing	Slower attainment of the equilibrium
concentration	
Addition of a	Quicker attainment of the equilibrium
catalyst	

32. Which chemicals compounds do fertilisers commonly contain?

Nitrogen, phosphorus and potassium compounds.

33. Why do fertilisers contain potassium, nitrogen and phosphorus compounds? *They promote plant growth.*

34. Complete the equation for the reaction below:

Word equation	Ammonia	+	Nitric acid	\rightarrow	Ammonium nitrate
Balanced symbol	NH₃	+	HNO ₃	<i>→</i>	NH ₄ NO ₃
equation					

35. What are the differences between the laboratory preparation and industrial preparation of ammonium sulfate?

Laboratory	Ammonia is reacted directly with sulfuric acid. This is a small scale batch process. Slow and only small amounts produced.
Industrial	The process starts with the individual elements and involves many stages to produce the ammonia and sulfuric acid. Once made the ammonia and sulfuric acid are reacted together to make ammonium sulfate. This is a large scale continuous process which is quicker and produces larger quantities.

36. What does a fuel cell do?

A fuel cell reacts hydrogen and oxygen together to produce a voltage and water is the only product.

37. How long will a fuel cell produce a voltage for?

Until one of its reactants is used up.

38. What are the strengths and weaknesses of fuel cells?

Strengths	Weaknesses
Do not produce greenhouse gases e.g. carbon dioxide	Cannot be used for large scale energy production
Do not produce harmful products e.g. carbon monoxide, sulfur dioxide, nitrogen oxides, soot (carbon).	Hydrogen needs much larger storage volume compared to fossil fuels as it is a gas.
More efficient than fossil fuel power stations or batteries.	Safe storage of hydrogen under high pressure (reduces volume needed) is a problem.
Renewable (as long as hydrogen is available from the water produced)	Electrolysis is need to produce hydrogen from water. This is expensive.
Do not have many moving parts to go wrong.	Disposal of used fuel cells is a problem. They may contain toxic metal compounds.

Paper 4 – Topic 6 groups in the periodic table

1. The elements in group 1 of the periodic table are called ______. The elements in group 7 are called ______. The elements in group 0 are called the ______.

2. Draw a labelled diagram for the structure of particles in metal.

3. Use the structure of metals to explain the properties shown in the table.

Property	Explanation
Will conduct electricity	
Have high melting points	

4. Group 1 metals can be cut with a knife. This means that they are ______. The heat released as they react causes group 1 metals to form a molten ball because they have relatively ______ melting points.

5. Describe what you see when a group 1 metal reactions with water.

6. What is the pattern in reactivity for the group 1 metals and explain this pattern?

7. Complete the table below for the group 7 elements.

Element	Colour	State at room temperature
Fluorine		
Chlorine		
Bromine		
Iodine		

- 8. What is the pattern in melting and boiling point of the group 7 halogens?
- 9. Describe the chemical test for chlorine.

10. Complete the word and symbol equations below for the reaction between a metal and a halogen.

Aluminium	+	Chlorine	\rightarrow	
Iron	+	Bromine	\rightarrow	

11. Complete the word and symbol equations below for the reaction between a metal and a halogen.

Hydrogen	+	Chlorine	\rightarrow	

12. What is formed when the product of the reaction shown in question 10 dissolves in water?

13. What is the pattern in reactivity for the elements in group 7 and explain it?

14. Complete the equations below to show the displacement reactions which take place between the halogens.

1	Chlorine	+	Potassium Iodide	\rightarrow	+	
2	lodine	+	Potassium Chloride	\rightarrow		

15. What is meant by reduction?

17. For reaction 1 in question 13 identify which substances have been oxidised and reduced.Equation 1 - Oxidised ______reduced ______

18. Explain why the noble gases are chemically inert.

19. Complete the table below to show the properties and uses for noble gases.

Property	Use

Paper 4 – Topic 6 groups in the periodic table answers

1. The elements in group 1 of the periodic table are called *alkali metals*. The elements in group 7 are called *halogens* and the elements in group 0 are called the *noble gases*.

2. Draw a labelled diagram for the structure of particles in a metal.

3. Use the structure of metals to explain the properties shown in the table.

Property	Explanation
Will conduct electricity	The delocalised electrons are able to move about to carry the electrical current
Have high melting points	There are strong electrostatic attractions in the structure

4. Group 1 metals can be cut with a knife. This means that they are *soft*.. The heat released as they react causes group 1 metals to form a molten ball because they have relatively *low* melting points.

5. Describe what you see when a group 1 metal reactions with water. they float on the surface, fizz as they produce a gas (hydrogen) and form a molten ball. If indicator is added the water will turn purple as the alkali is made (a metal hydroxide)

6. What is the pattern in reactivity for the group 1 metals and explain this pattern?

as you go down the group the metals become more reactive

all group 1 metals need to lose an electron to become stable

the atoms become bigger as you go down the group meaning that the electrons are further away from the positive nucleus and are therefore easier to lose.

7. Complete the table below for the group 7 elements.

Element	Colour	State at room temperature
Fluorine	Yellow	Gas
Chlorine	Green	Gas
Bromine	Orange	Liquid
lodine	Dark grey	Solid

8. What is the pattern in melting and boiling point of the group 7 halogens? *As you go down the group the melting and boiling point increases.*

9. Describe the chemical test for chlorine.

Let the gas pass over a piece of damp litmus. If the gas is chlorine the litmus will bleach (turn white).

10. Complete the word and symbol equations below for the reaction between a metal and a halogen.

Aluminium	+	Chlorine	\rightarrow	Aluminium chloride
2AI	+	3Cl₂	\rightarrow	2AICI₃
Iron	+	Bromine	\rightarrow	Iron Bromide
2Fe	+	3Br ₂		2FeBr₃

11. Complete the word and symbol equations below for the reaction between a metal and a halogen.

Hydrogen	+	Chlorine	\rightarrow	Hydrogen chloride
H ₂		Cl ₂	\rightarrow	2HCl

12. What is formed when the product of the reaction shown in question 9 dissolves in water? *an acidic solution*

13. What is the pattern in reactivity for the elements in group 7 and explain it?

as you go up the group they become more reactive

they all need to gain one electron to become stable

the atoms become smaller as you go up the group making it easier for them to gain an electron (the electron would be added nearer to the positive nucleus)

14. Complete the equations below to show the displacement reactions which take place between the halogens.

Chlorine	+	Potassium	\rightarrow	Potassium	+	Iodine
		Iodide		Chloride		
Cl ₂	+	2KI	\rightarrow	2KCI	+	<i>I</i> ₂
lodine	+	Potassium Chloride	\rightarrow	No reaction		

15. What is meant by reduction?

Reduction is the gaining of electrons

16. What is meant by oxidation? *Oxidation is the loss of electrons*

17. For reaction 1 in question 13 identify which substances have been oxidised and reduced.

Equation 1 - Oxidised *lodide ion to iodine* reduced *chlorine to chloride ion*

18. Explain why the noble gases are chemically inert. they all have full outer energy which means that they are stable they do not need to react to gain or lose electrons

 Property
 Use

 Inert
 Provide an atmosphere for welding and filament lamps to stop the hot metals reacting

 Low density
 Filling a balloons so that they float

 Non- flammable
 As above

19. Complete the table below to show the properties and uses for noble gases.

Paper 4 – Topic 7 rates of reaction	
 When particles collide they need to have enough 	and the correct
for the collision to be	If the particles do not have enough
energy then they will not react.	
2. Explain how increasing the following causes the rate of	f reaction to increase
a) Increasing concentration or pressure in gases	
b) increasing temperature	
c) increasing surface area	
d) Adding a catalyst	
· · · · · · · · · · · · · · · · · · ·	
3. What is a catalyst?	
4. What is an enzyme?	
5. Where are enzymes used?	
6 What is meant by an exothermic reaction?	
o. What is meant by an exothermic reaction:	
7. What is meant by an endothermic reaction?	
8. When bonds are broken energy is	. This means that it is an
process.	
·	
9. When bonds are made energy is	. This means that it is an
process.	

10. Using the information in questions 8 and 9 to explain why a reaction would be a) endothermic overall.

b) exothermic overall.

12. What is meant by activation energy?

13. Complete the two diagrams to show the energy changes for endothermic and exothermic reactions. Clearly label the activation energy in each diagram.

Exothermic reaction		Endoth	nermic reaction
Energy	Reactants	Energy	Reactants
	Progress of reaction		Progress of reaction

14. Calculate the energy change for the combustion of methane. Complete the word and balanced symbol equations, including a diagram of the molecules involved.

Word	Methane	+	Oxygen	\rightarrow	 +	
equation						
Symbol		+		\rightarrow	+	
equation						
Diagram		+		\rightarrow	+	
of						
molecules						

Bond energy values

Type of bond	Amount of energy to break or make the bond (KJ mol- ¹)				
C-H	413				
0=0	495				
C=O	745				
O-H	467				

Paper 4 – Topic 7 rates of reaction answers

1. When particles collide they need to have enough *energy* and the correct *orientation* for the collision to be *successful*. If the particles do not have enough energy then they will not react.

2. Explain how increasing the following causes the rate of reaction to increase

a) Increasing concentration or pressure in gases

this means that there are more particles which increases the chance of successful collisions causing the rate of reaction to increase

b) increasing temperature

this gives the particles more energy which means that they move around more which increases the chance of successful collisions causing the rate of reaction to increase

c) Increasing surface area

this means that there is more space available for successful collisions to happen causing the rate of reaction to increase

d) Adding a catalyst

a catalysts lowers the amount of energy needed for particles to react. This means that there are more particles with enough energy to react which increases the chance of successful collisions causing the rate of reaction to increase. Catalysts are not used up during the reaction.

3. What is a catalyst?

A catalyst is a substance that speeds up the rate of a reaction by lowering the activation energy It is not chemical changed or used up during the reaction – its mass stays the same

4. What is an enzyme? *An enzyme is a biological catalyst*

5. Where are enzymes used? *Enzymes are used in the production of alcoholic drinks*

6. What is meant by an exothermic reaction? *a chemical reaction which releases energy to the surroundings causing them to become hotter*

7. What is meant by an endothermic reaction? a chemical reaction which takes in energy from the surroundings causing them to become cooler

8. When bonds are broken energy is *taken in*. This means that it is an *endothermic* process.

9. When bonds are made energy is *released*. This means that it is an *exothermic* process.

10. Using the information in questions 8and 9 to explain why a reaction would be a) endothermic overall.

more energy is taken in to break bonds than is released as bonds are made

b) exothermic overall.

more energy is released as bonds are made than is taken in to break bonds

12. What is meant by activation energy?

Activation energy is the minimum amount of energy required for a successful reaction to happen when particles collide

13. Complete the two diagrams to show the energy changes for endothermic and exothermic reactions. Clearly label the activation energy in each diagram.

14. Calculate the energy change for the combustion of methane. Complete the word and balanced symbol equations, including a diagram of the molecules involved.

Word	Methane	+	Oxygen	\rightarrow	Carbon	+	Water
equation					Dioxide		
Symbol	CH₄	+	20 ₂	\rightarrow	<i>CO</i> ₂	+	2H₂O
equation							
Diagram	H	+	0=0	\rightarrow	o=c=o	+	0
of			0-0				
molecules			0 = 0				н∕∽н
	Ĥ						

Bond energy values

Type of bond	Amount of energy to break or				
	make the bond (KJ mol- ¹)				
C-H	413				
0=0	495				
C=O	745				
O-H	467				

Bonds broken				Bonds mad	e	
С-Н х 4	4x 413 =	1652		C=O x 2	2 x 745 =	1490
0=0 x2	2x 495 =	990		О-Н х 4	4 x 467 =	1868
	Total	2642 KJmol ⁻¹			Total	3358 KJmol ⁻¹
Total energy	change	=Bonds broken -	- bonds	made		
		= 2642 - 3358 =	-716 KJ	mol⁻¹		
This means that this reaction is exothermic. More energy is released as bonds are made						
than is taken	in when bon	onds are broken.				

Paper 4 – topic 8 fuels and Earth science

1. What does hydrocarbon mean?

2. Crude oil is a mixture of ______.

3. Why is crude oil called a finite resource?

4. What is the name of the process which is used to separate crude oil into more useful products?

5. Explain how the process in number 4 is used to separate the fractions in crude oil.

6. Give a use for each of the following fractions

Fraction	Use
Gases	
Petrol	
kerosene	
Diesel oil	
Fuel oil	
bitumen	

7. Complete the following table by adding arrows to show the trend in properties

	Boiling point	Ease of ignition	viscosity
Short hydrocarbon chain			
Long hydrocarbon chain			

8. Explain what the term homologous series means.

9. Explain what an alkane is.

11. Complete the equation below for the complete combustion of methane

Methane	+	 \rightarrow	 +	

12. How do you test for carbon dioxide and what is a positive result?

13. What two chemicals does the incomplete combustion of a hydrocarbon produce? Why does this happen?

14. Explain why one of the chemicals in question 13 is toxic.

15. Why is sulfur dioxide formed when some hydrocarbons are burnt?

16. How does sulfur dioxide form acid rain and what problems does acid rain cause?

17. Explain how oxides of nitrogen are formed.

18. What are the advantages and disadvantages of using hydrogen as a fuel in cars?

Advantages	Disadvantages

19. Write the word and balanced symbol equation for the combustion of hydrogen.

Hydrogen	+	Oxygen	\rightarrow	
	+		\rightarrow	

20.	What	is	meant	by	а	non-renewable f	uel?
-----	------	----	-------	----	---	-----------------	------

21. List three fuels formed from a)	n crude oil which b)	are non-renewab c	le. :)	
22. Which non-renewable fuel	is formed from n	atural gas?		
23. What is meant by the term	cracking?			

24. Why do we need to use cracking?

25. Decane $C_{10}H_{22}$ can be cracked to produce a molecule of propane, C_3H_8 , and one molecule of an alkane X. The formula of alkane molecule X is:

- $A \qquad C_7 H_{14}$
- B C₇H₁₆
- C C₈H₁₆
- D C₁₃H₂₈

26. The earths early atmosphere was produced by _____

27. Which gases did the Earth's early atmosphere contain?

Gas	Amount

28. What caused the oceans to form?

29. Explain how the amount of carbon dioxide in the atmosphere was reduced by the oceans?

30. What effect did primitive plants have on the atmosphere and what process did they use to do this?

31. Describe the chemical test for oxygen.

32. Which gases in the Earth's atmosphere keep the Earth warm?

Gases	

33. Explain how the gases in question 32 keep the Earth warm.

34. What does the term greenhouse effect mean?

35. Which human activities do scientists believe are causing climate change?

1. ______

36. List and explain activities that can be used to reduce the effects of climate change.

Activities	Explanation

<u>Paper 4 – topic 8 fuels and Earth science answers</u>
1. What does hydrocarbon mean? *a compound which contains carbon and hydrogen only*

2. Crude oil is a mixture of *hydrocarbons*

3. Why is crude oil called a finite resource? Crude oil is formed from fossils in a process that takes millions of years. This means that it cannot be replaced and it will run out.

4. What is the name of the process which is used to separate crude oil into more useful products? *fractional distillation (1)*

5. Explain how the process in number 4 is used to separate the fractions in crude oil.

The crude oil mixture is heated

The shorter hydrocarbon molecules have a lower boiling point and rise high up the column. The longer hydrocarbons have higher boiling points and condense towards the bottom of the column. The fractions condense at different points in the column allowing them to be separated.

6. Give a use for each of the following fractions

Fraction	Use
Gases	Heating in houses/cooking
Petrol	Fuel for cars
kerosene	Fuel for aeroplanes
Diesel oil	Fuel for cars/trains
Fuel oil	Fuel for large ships and power stations
bitumen	Road surfaces/roofs

7. Complete the following table by adding arrows to show the trend in properties

	Boiling point	Ease of ignition	viscosity
Short hydrocarbon chain			
long hydrocarbon chain			

8. Explain what the term homologous series means.

A family of molecules that have the same general formula, increase by a CH₂ group, have an increase in boiling point and similar chemical properties.

9. Explain what an alkane is.

Alkane are an homologous series that contain carbon carbon single bonds.

10. What is meant by complete combustion?

burning a hydrocarbon with enough oxygen to produce carbon dioxide and water, releasing energy

11. Complete the equation below for the complete combustion of methane

Methane	+	oxygen	\rightarrow	Carbon	+	water
				dioxide		

12. How do you test for carbon dioxide and what is a positive result? *Collect the gas and bubble it through limewater. If the gas turns cloudy then it is carbon dioxide.*

13. What two chemicals does the incomplete combustion of a hydrocarbon produce? Why does this happen?

carbon (soot) and carbon monoxide are formed. This happens when the fuel is burnt with a limited supply of oxygen.

14. Explain why one of the chemicals in question 13 is toxic. carbon monoxide will bond to red blood cells stops them carrying oxygen causes suffocation

15. Why is sulfur dioxide formed when some hydrocarbons are burnt? The fuel contains sulfur as an impurity which reacts with oxygen to form sulfur dioxide

16. How does sulfur dioxide form acid rain and what problems does acid rain cause? *it dissolves in water in the clouds can erode buiildings/statues*

17. Explain how oxides of nitrogen are formed.

Fuels burn in engines. The high temperatures produced causes the nitrogen and oxygen to react together forming oxides of nitrogen

18. What are the advantages and disadvantages of using hydrogen as a fuel in cars?

Advantages	Disadvantages		
Does not produce carbon dioxide when burnt	It is a gas so it is difficult to store		
It is easy to burn	Limited availability for refuelling		

19. Write the word and balanced symbol equation for the combustion of hydrogen.

Hydrogen	+	Oxygen	\rightarrow	Water
2H ₂	+	02	\rightarrow	2H₂O

20. What is meant by a non-renewable fuel?

A fuel that once used cannot be replaced because it takes too long to replace the fuel e.g. fossil fuels.

21. List three fuels formed from crude oil which are non-renewable.a) petrolb) kerosenec) diesel oil

22. Which non-renewable fuel is formed from natural gas? *methane*

23. What is meant by the term cracking? *splitting long chain hydrocarbons into shorted hydrocarbons*

24. Why do we need to use cracking?

not enough short chain hydrocarbons available to meet the demands for fuels need to split long chains to make more short chains

25. Decane $C_{10}H_{22}$ can be cracked to produce a molecule of propane, C_3H_8 , and one molecule of an alkane X. The formula of alkane molecule X is:

A C₇H₁₄

26. The earths early atmosphere was produced by volcanic activity

27. Which gases did the Earth's early atmosphere contain?

Gas	Amount
Carbon dioxide	Large amounts
Water vapour	
Other gases e.g.methane, ammonia	Small amounts
No oxygen	

28. What caused the oceans to form?

The water vapour cooled and condensed to form oceans

29. Explain how the amount of carbon dioxide in the atmosphere was reduced by the oceans? *The carbon dioxide gas dissolved in the oceans*

30. What effect did primitive plants have on the atmosphere and what process did they use to do this?

They absorbed carbon dioxide and produced oxygen using photosynthesis

31. Describe the chemical test for oxygen.

Place a glowing splint in to the gas and if it relights then the gas is oxygen

32. Which gases in the Earth's atmosphere keep the Earth warm?

Gases
Carbon dioxide
Methane
Water vapour

33. Explain how the gases in question 32 keep the Earth warm. *The gases absorb heat radiation and release it keeping the Earth warm*

34. What does the term greenhouse effect mean?

This describes the process which causes the Earth to become warm as the atmosphere causes heat to be trapped.

35. Which human activities do scientists believe are causing climate change?

- 1. Burning fossil fuels
- 2. Livestock farming

36. List and explain activities that can be used to reduce the effects of climate change.

Activities	Explanation
Use renewable energy	Reduced greenhouse gas emissions
resources	
Flood defences	Prevent damage as water levels rise

Paper 4 – Topic 9 Triple chemistry only

1. Why must the qualitative test for an ion be unique?

2.	Describe how to carry out a flame test.
i) _	
ii)	
iii)	
iv)	
v)	
vi)	

3. Complete the table below to show the colour of the cations during a flame test.

Cation	Flame test colour
Lithium, Li⁺	
Sodium, Na+	
Potassium, K ₊	
Calcium, Ca ²⁺	
Copper, Cu ²⁺	

4. What is a precipitate?

5. Complete the table below to show the observations for the tests using sodium hydroxide. Complete an equation for each reaction.

Cation in	Description of the	Observation	Chemical equation for the
solution	test		reaction
Aluminium,			
Al ³⁺			
Calcium,			
Ca ²⁺			
Copper,			
Cu ²⁺			
Iron (II),			
Fe ²⁺			
Iron (III)			
Fe ³⁺			
Ammonium,			
NH_4^+			

- 6. Describe the chemical test for ammonia.
- 7. Describe the test for carbonate ions, CO_3^{2-} .

8. Describe the test for sulfate ions, SO_4^{2-} .

9. Give the ionic equation for the test for a sulfate ion.

10.Describe the test for halide ions.

11.Complete the table below to show the results and equations for halide ions.

Halide ion	Observation	Equations
Chloride, Cl ⁻		
Bromide, Br ⁻		
lodide, l ⁻		

12. What are the advantages of instrumental qualitative tests?

i) _	 _
ii)	 -
iii)	 _

13. Describe two ways that a flame photometer is used to identify ions.

i) ______ ii) _____

14. Complete the table below to show the formula and molecular structure for each alkane.

Alkanes	Formula	Molecular structure
Methane		
Ethane		
Propane		
Butane		

Alkenes	Formula	Molecular structure
Ethene		
Propene		
But-1-ene		
But-2-ene		

16. Complete the table below to show the formula and molecular structure for each alkene.

17. Why are alkenes unsaturated hydrocarbons?

18. Describe the test to identify alkanes and alkenes.

19. Complete the table below to show the reactions of bromine water with ethene.

Ethene	+	Bromine	\rightarrow	1, 2 —
				dibromoethane
C_2H_4	+	Br ₂	\rightarrow	CH₃BrCH₃Br
н н 	+	Br ₂	\rightarrow	н —
c = c				н — с — с — н
й й				∣ ∣ Br Br

20. What type of reaction is combustion?

21. What are the products of the complete combustion (oxidation) of alkanes and alkenes?

22. Complete the reactions below to produce balanced equations for the combustion of alkanes and alkenes.

Methane	+	Oxygen	<i>→</i>		+	
	+		<i>→</i>		+	
Ethene	+	Oxygen	\rightarrow		+	
	+		<i>→</i>		+	
						•
Ethane	+	Oxygen	<i>→</i>		+	
	+		>		+	
		•	•	•	•	•

23. What is a polymer?

24. What is a monomer?

25. Complete the equation below to show the formation of poly(ethene) from ethene.

26. What is needed to make additional polymers?

27. Draw the monomers and polymers below.

Monomer	Polymer structure		
Propene	Poly(propene)		
Topene	τοιγ(ριορείιε)		
Chloroethene	Poly(chloroethene) (PVC)		
Tetrafluoroethene	Poly(tetrafluoroehene) (PTFE)		

28. Complete the table below to show the properties and uses of each polymer.

Polymer	Properties	uses
Poly(ethene)		
Poly(propene)		
Poly(chloroethene) (PVC)		
Poly(tetrafluoroethene) (PTFE)		

29. What is condensation polymerisation?

30. What type of link is used to join condensation polymers?

31. Complete the table below to show how a polyester is formed.

32. What are the problems associated with the use of polymers?

- i) ______ ii) _____
- iii)_____
- iv) _____

33. What are the advantages and disadvantages of recycling polymers?

Advantages	Disadvantages		

34. Complete the table for the naturally occurring polymers.

-	
Polymer	Monomer units
DNA	
Starch	
Proteins	

35. Complete the table below to show the formula and molecular structure for each alcohol.

Alcohols	Formula	Molecular structure
Methanol		
Ethanol		
Propan-1-ol		
Butan-1-ol		

36. What is the functional group an alcohol?

37. When alcohols are dehydrated what do they form?

38. Complete the equation below for the dehydration of ethanol.

Ethanol	\rightarrow	+	
C₂H₅OH	<i>></i>	+	
Н Н-С-О-Н Н	<i>></i>	+	

39. Why do we burn alcohols?
40. Complete the table below to show the formula and molecular structure for each carboxylic acid.

Carboxylic acids	Formula	Molecular structure
Methanoic acid		
Ethanoic acid		
Propanoic acid		
Butanoic acid		

41. What is the functional group of a carboxylic acid?

42. How do solutions of carboxylic acids behave?

43. What does ethanol, CH₃CH₂OH, produce when it is oxidised?

44. What do molecules within a homologous series have in common?

- i) _____
- ii) _____
- iii) _____
- iv) _____
- v) _____

45. How is ethanol produced by fermentation?

46. Complete the equation for the production of ethanol during fermentation.

Glucose	\rightarrow	+	
$C_6H_{12}O_6$	\rightarrow	+	

47. How do we produce a concentration solution of alcohol from fermentation?

48. What size are nanoparticles?

49. How does the size of nanoparticles compare to atoms and molecules?

50. What key property do nanoparticles have that make them useful?

51. Give some uses of nanoparticles.

52. What are the risks in using nanoparticles?

i)	 	
ii)	 	
iii) _	 	

53. Complete the table below to show the properties of the materials.

Bulk material	Properties	Uses
Glass		
Clay		
Polymers		
Concrete/laminates		

Paper 4 – topic 9 triple chemistry answers

1. Why must the qualitative test for an ion be unique?

So the presence of a certain ion can be clearly identified.

- 2. Describe how to carry out a flame test.
- *i)* Dip the wire loop in hydrochloric acid.
- *ii)* Place the loop into the Bunsen burner flame.
- *iii) Place the loop into distilled water.*
- *iv)* Dip the wire in to the salt to be tested.
- v) Place the loop into the pale blue Bunsen burner flame.
- vi) observe the colour produced.
- 3. Complete the table below to show the colour of the cations during a flame test.

Cation	Flame test colour
Lithium, Li⁺	Red
Sodium, Na+	yellow
Potassium, K ₊	Lilac
Calcium, Ca ²⁺	Orange-red
Copper, Cu ²⁺	Blue-green

4. What is a precipitate?

An insoluble solid formed during a reaction.

5. Complete the table below to show the observations for the tests using sodium hydroxide. Complete an equation for each reaction.

Cation in	Description of the	Observation	Chemical equation for the reaction
solution	test		
Aluminium,	Add a few drops of	A white precipitate	Al ³⁺ (aq) + 3OH⁻(aq) →Al(OH)₃(s)
Al ³⁺	sodium hydroxide.	forms which	$AI(OH)_3(s) + OH(aq) \rightarrow AI(OH)_4(aq)$
	Continue to add	dissolves when	
	sodium hydroxide	excess sodium	
	once the	hydroxide is added to	
	precipitate has	form a colourless	
	formed	solution	
Calcium,		A white precipitate	$Ca^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ca(OH)_{2}(s)$
Ca ²⁺		of calcium hydroxide	
		forms	
Copper,		A blue precipitate of	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$
Cu ²⁺	Add a faw drang of	copper (II) hydroxide	
	adium hydroxido	forms	
Iron (II),	to the test solution	A green precipitate of	$Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$
Fe ²⁺		iron (II) hydroxide	
		forms	
Iron (III)		A brown precipitate	Fe³⁺(aq) + 3OH⁻(aq) → Fe(OH)₃(s)
Fe ³⁺		of iron (III) hydroxide	
		forms	
Ammonium,	Add Sodium	No precipitate forms.	NH₄⁺(aq) + 3OH⁻(aq) → NH₃(g) +
NH_4^+	hydroxide. Gently	Ammonia gas is	H ₂ O (I)
	heat the solution	produced when	
	holding a piece of	heated which turns	

dc	amp red litmus	the red litmus paper
οι	ver the top of the	blue.
te	est tube.	

6. Describe the chemical test for ammonia.

Add litmus paper to the gas. It will turn from red to blue.

7. Describe the test for carbonate ions, CO₃²⁻.
Add hydrochloric acid to the sample.
Bubble any gas produced through limewater.
If the sample if a carbonate it will turn the limewater from clear to cloudy.

8. Describe the test for sulfate ions, SO_4^{2-} .

Add a few drops of hydrochloric acid to the sample followed by barium chloride. If sulfate ions are present a white precipitate forms.

9. Give the ionic equation for the test for a sulfate ion.

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

10.Describe the test for halide ions.

Add dilute nitric acid to the sample followed by silver nitrate. A precipitate forms if a halide ion is present.

11.Complete the table below to show the results and equations for halide ions.

Halide ion	Observation	Equations
Chloride, Cl ⁻	White precipitate forms	Ag⁺ (aq) + Cl⁻ (aq)> AgCl (s)
Bromide, Br ⁻	Cream precipitate forms	Ag⁺ (aq) + Br (aq)> AgBr (s)
lodide, l ⁻	Yellow precipitate forms	Ag⁺ (aq) + I⁻ (aq)> AgI (s)

12. What are the advantages of instrumental qualitative tests?

i) improved sensitivity

ii) improved accuracy

iii) improved speed

13. Describe two ways that a flame photometer is used to identify ions.

i) to find the concentration of an ion using a calibration curve.

ii) by comparison of data against reference data.

14. Complete the table below to show the formula and molecular structure for each alkane.

Alkanes	Formula	Molecular structure
Methane	CH₄	Ĥ
		H-C-H
		Ĥ
Ethane	C ₂ H ₆	H H
		H-C-C-H
		н́н́
Propane	C₃H ₈	H H H
		H-C-C-C-H
		Ĥ Ĥ Ĥ
Butane	C4H10	нннн
		H-C-C-C-H

15. Why are alkanes saturated hydrocarbons?

The contain carbon-carbon single bonds (C-C) and carbon and hydrogen atoms only.

16. Complete the table below to show the formula and molecular structure for each alkene.

Alkenes	Formula	Molecular structure
Ethene	C₂H₄	H H
Propene	C₃H ₆	н н н c=c-С-н н н
But-1-ene	Citta	
But-2-ene	C4118	

17. Why are alkenes unsaturated hydrocarbons?

The contain carbon=carbon double bonds (C=C) and carbon and hydrogen atoms only.

18. Describe the test to identify alkanes and alkenes.
Add bromine water to the sample.
In alkenes the bromine water changes from yellow to colourless.
In alkanes it remains yellow.

19. Complete the table below to show the reactions of bromine water with ethene.

Ethene	+	Bromine	\rightarrow	1, 2 –
				dibromoethane
C₂H₄	+	Br ₂	\rightarrow	CH₃BrCH₃Br
H H 	+	Br ₂	<i>→</i>	H H
 н н				 Br Br

20. What type of reaction is combustion? *It is an oxidation reaction.*

21. What are the products of the complete combustion (oxidation) of alkanes and alkenes? *Carbon dioxide and water.*

22. Complete the reactions below to produce balanced equations for the combustion of alkanes and alkenes.

Methane	+	Oxygen	\rightarrow	Carbon	+	Water
				dioxide		
CH₄	+	20 ₂	→	CO ₂	+	2H₂O
Ethene	+	Oxygen	\rightarrow	Carbon	+	Water
				dioxide		
C₂H₄	+	30 2	→	2CO2	+	2H₂O
Ethane	+	Oxygen	\rightarrow	Carbon	+	Water
Ethane	+	Oxygen	→	Carbon dioxide	+	Water
Ethane 2C₂H 6	+	Oxygen 70 2	→ →	Carbon dioxide 4CO ₂	+	Water 6H ₂ O

23. What is a polymer?

A substance of high average relative molecular mass made up of small repeating units.

24. What is a monomer?

The repeating unit which is joined together.

25.Complete the equation below to show the formation of polyethene from ethene.

$ \begin{array}{cccc} H & H \\ - & H \\ C = C \\ - & H \\ H & H \end{array} $	
Ethene	Poly(ethene)

26. What is needed to make additional polymers?

A monomer containing C=C bonds.

27. Draw the monomers and polymers below.

28. Complete the table below to show the properties and uses of each polymer.

Polymer	Properties	uses
Poly(ethene)	Cheap, flexible, good insulator	Plastic bags and bottles, cling film
Poly(propene)	Flexible, does not shatter	Buckets, crates, rope and carpet
Poly(chloroethene) (PVC)	Tough, good insulator	Window frames, gutters, pipes, electrical wire insulation
Poly(tetrafluoroethene) (PTFE)	Tough, slippery, non-toxic	Non-stick coating on pans, stain proof clothing

29. What is condensation polymerisation?

The joining together of monomers to release water. Each monomer must contain two functional groups e.g. dicarboxylic acids joining diols.

30. What type of link is used to join condensation polymers? **An ester link.**

31. Complete the table below to show how a polyester is formed.

32. What are the problems associated with the use of polymers?

i) availability of starting materials.

ii) persistence in landfill sites, they are non-biodegradable.

iii) gases produced during their disposal by combustion.

iv) requirement to sort polymers so that they can be melted and reformed into a new product.

33. What are the advantages and disadvantages of recycling polymers?

Advantages	Disadvantages
Prevents disposal to landfill or incinerator	Collecting the polymers
Prolongs a finite resource	Sorting the polymers

34. Complete the table for the naturally occurring polymers.

Polymer	Monomer units
DNA	Four different nucleotide
Starch	Sugars
Proteins	Amino acids

35. Complete the table below to show the formula and molecular structure for each alcohol.

Alcohols	Formula	Molecular structure
Methanol	CH₃OH	H
		H-Ċ-O-H
		H
Ethanol	C₂H₅OH	Η̈́Η
		н-с-с-о-н
Propan-1-ol	C₃H ₇ OH	
		н—с́—с́—с́—он
		ніні
Butan-1-ol	C₄H₃OH	

36. What is the functional group an alcohol? *The –OH group.*

37. When alcohols are dehydrated what do they form?

An alkene

38. Complete the equation below for the dehydration of ethanol.

Ethanol	\rightarrow	Ethene	+	Water
C₂H₅OH	\rightarrow	C₂H₄	+	H₂O
н н-с-о-н н	÷	н-с-н н-с-н	+	н∕⁰∕н

39. Why do we burn alcohols?

The combustion of alcohols releases energy.

40. Complete the table below to show the formula and molecular structure for each carboxylic acid.

Carboxylic acids	Formula	Molecular structure
Methanoic acid	нсоон	н — с о—н
Ethanoic acid	СН₃СООН	
Propanoic acid	C₂H₅COOH	
Butanoic acid	C₃H⁊COOH	

41. What is the functional group of a carboxylic acid? -COOH

42. How do solutions of carboxylic acids behave? *They have the properties of typical acids.*

43. What does ethanol, CH₃CH₂OH, produce when it is oxidised? *Ethanoic acid, CH₃COOH*

44. What do molecules within a homologous series have in common? *i) The same general formula ii) The same functional group iii) Similar chemical properties iv) a trend in their physical properties v) increase by -CH*₂ group each time.

45. How is ethanol produced by fermentation? Yeast contains enzymes. The yeast is added to a solution of carbohydrate and ethanol is produced.

46. Complete the equation for the production of ethanol during fermentation.

Glucose	÷	Ethanol	+	Carbon dioxide
C ₆ H ₁₂ O ₆	\rightarrow	C₂H₅OH	+	CO ₂

47. How do we produce a concentration solution of alcohol from fermentation? *Carry out fractional distillation of the fermentation mixture.*

48. What size are nanoparticles? *Between 1 and 100nm in diameter*

49. How does the size of nanoparticles compare to atoms and molecules? *Nanoparticles are bigger than atoms and molecules.*

50. What key property do nanoparticles have that make them useful? *They have a large surface area to volume ratio.*

51. Give some uses of nanoparticles.

Catalysts, lubricant coating, electrical conductors, surgical antibacterial materials.

52. What are the risks in using nanoparticles? *i) They can be breathed in or could pass between cell-surface membranes. ii) They could carry toxic substances on their surfaces. iii) They could catalyse harmful reactions.*

53. Complete the table below to show the properties of the materials.

Bulk material	Properties	Uses
Glass	Unreactive, brittle,	Windows
	transparent	
Clay	Can be shaped	Bricks, porcelain, china, tiles
Polymers	Moulded, strong,	Insulation, window frames,
	unreactive, poor conductors	water pipes, waterproof
	of heat and electricity	flooring
Concrete/laminates	Mixture of 2 or more	Building materials,
	materials, strong,	